
 325

CHAPTER FIFTEEN

Introduction to Processor Architecture

15.1 Organization versus Architecture
Up to this point, the discussion has focused on the components from

which computers are built, i.e., computer organization. In contrast,
computer architecture is the science of integrating those components to
achieve a level of functionality and performance. It is as if computer
organization examines the lumber, bricks, nails, and other building
material while computer architecture looks at the design of the house.

We've already discussed a number of the components of computer
architecture. For example, when we discussed memory in Chapter 12,
we introduced the interface that the processor uses to communicate
with the memory and other peripherals of the system. Chapter 13
showed how internal registers and the cache RAM improve the
processor's performance.

This chapter puts these components together and introduces a few
new ones to complete the architecture of a general purpose processor.
A few advanced architecture topics are also examined to see how the
general architecture can modified to deliver improved performance.

15.2 Components
Before going into detail on how the processor operates, we need to

discuss some of its sub-assemblies. The following sections discuss
some of the general components upon which the processor is built.

15.2.1 Bus
As shown in Chapter 12, a bus is a bundle of wires grouped together

to serve a single purpose. The main application of the bus is to transfer
data from one device to another. The processor's interface to the bus
includes connections used to pass data, connections to represent the
address with which the processor interested, and control lines to
manage and synchronize the transaction. These lines are "daisy-
chained" from one device to the next.

The concept of a bus is repeated here because the memory bus is not
the only bus used by the processor. There are internal buses that the
processor uses to move data, instructions, configuration, and status

326 Computer Organization and Design Fundamentals

between its subsystems. They typically use the same number of data
lines found in the memory bus, but the addressing is usually simpler.
This is because there are only a handful of devices between which the
data is passed.

In this chapter we will introduce new control lines that go beyond
the read control, write control, and timing signals discussed in Chapter
12. These new lines are needed by the processor in order to service
external devices and include interrupt and device status lines.

15.2.2 Registers
As stated when they were introduced in Chapter 13, a register stores

a binary value using a group of latches. For example, if the processor
wishes to add two integers, it may place one of the integers in a register
labeled A and the second in a register labeled B. The contents of the
latches can then be added by connecting their Q outputs to the addition
circuitry described in Chapter 8. The output of the addition circuitry is
then directed to another register in order to store the result. Typically,
this third register is one of the original two registers, e.g., A = A + B.

Although variables and pointers used in a program are all stored in
memory, they are moved to registers during periods in which they are
the focus of operation. This is so that they can be manipulated quickly.
Once the processor shifts its focus, it stores the values it doesn't need
any longer back in memory.

The individual bit positions of the register are identified by the
power of two that the position represents as an integer. In other words,
the least significant bit is bit 0, the next position to the left is bit 1, the
next is bit 2, and so on.

For the purpose of our discussion, registers may be used for one of
four types of operations.

• Data registers – These registers hold the values on which to

perform arithmetic or logical functions.
• Address registers – Sometimes, the processor may need to store an

address rather than a value. A common use of an address register is
to hold a pointer to an array or string. Another application is to hold
the address of the next instruction to execute.

• Instruction registers – Remember that instructions are actually
numeric values stored in memory. Each number represents a
different command to be executed by the processor. Some registers

 Chapter 15: Introduction to Processor Architecture 327

are meant specifically to hold instructions so that they can be
interpreted to see what operation is to be performed.

• Flag registers – The processor can also use individual bits grouped
together to represent the status of an operation or of the processor
itself. The next section describes the use of flags in greater detail.

15.2.3 Flags
Picture the instrumentation on the dash board of a car. Beside the

speedometer, tachometer, fuel gauge, and such are a number of lights
unofficially referred to as "idiot lights". Each of these lights has a
unique purpose. One comes on when the fuel is low; another indicates
when the high beams are on; a third warns the driver of low coolant.
There are many more lights, and depending on the type of car you
drive, some lights may even replace a gauge such as oil pressure.

How is this analogous to the processor's operation? There are a
number of indicators that reveal the processor's status much like the
car's idiot lights. Most of these indicators represent the results of the
last operation. For example, the addition of two numbers might produce
a negative sign, an erroneous overflow, a carry, or a value of zero.
Well, that would be four idiot lights: sign, overflow, carry, and zero.

These indicators, otherwise known as flags, are each represented
with a single bit. Going back to our example, if the result of an addition
is negative, the sign flag would equal 1. If the result was not a negative
number, (zero or greater than zero) the sign flag would equal 0.

For the sake of organization, these flags are grouped together into a
single register called the flags register or the processor status register.
Since the values contained in its bits are typically based on the outcome
of an arithmetic or logical operation, the flags register is connected to
the mathematical unit of the processor.

One of the primary uses of the flags is to remember the results of the
previous operation. It is the processor's short term memory. This
function is necessary for conditional branching, a function that allows
the processor to decide whether or not to execute a section of code
based on the results of a condition statement such as "if".

The piece of code shown in Figure 15-1 calls different functions
based on the relative values of var1 and var2, i.e., the flow of the
program changes depending on whether var1 equals var2, var1 is
greater than var2, or var1 is less than var2. So how does the processor
determine whether one variable is less than or greater than another?

328 Computer Organization and Design Fundamentals

if(var1 == var2)
 equalFunction();
else if(var1 > var2)
 greaterThanFunction();
else
 lessThanFunction();

Figure 15-1 Sample Code Using Conditional Statements

The processor does this using a "virtual subtract." This is a
subtraction that occurs in the mathematical unit of the processor where
it affects the flags, but the result is discarded.

Referring back to our example, the results of a subtraction of var2
from var1 is used to select one of three paths through the code.

• var1 is equal to var2 – When one value is subtracted from an equal

value, the result is zero. Therefore, if the zero flag is set after the
subtraction, the function equalFunction() should be executed.

• var1 is greater than var2 – If var1 is larger, then no borrow is
needed in the subtraction which results in a non-zero value. (A
borrow will set the carry flag.) Therefore, after a subtraction, if the
carry flag and the zero flag are both cleared, var1 was greater than
var2 and the function greaterThanFunction() is called.

• var1 is less than var2 – If var1 is smaller, then a borrow is needed
setting the carry flag. Therefore, after a subtraction, if the carry flag
is set, var1 was less than var2 and lessThanFunction() is called.

Later in this chapter, there is a more detailed examination of this

process including a list of the many other program flow control options
that are available, each of which tests the flags to determine which code
to jump to after one of these virtual subtracts.

15.2.4 Buffers
Rarely does a processor operate in isolation. Typically there are

multiple processors supporting the operation of the main processor.
These include video processors, the keyboard and mouse interface
processor, and the processors providing data from hard drives and
CDROMs. There are also processors to control communication

 Chapter 15: Introduction to Processor Architecture 329

interfaces such as USB, Firewire, and Ethernet networks. These
processors all operate independently, and therefore one may finish an
operation before a second processor is ready to receive the results.

If one processor is faster than another or if one processor is tied up
with a process prohibiting if it from receiving data from a second
process, then there needs to be a mechanism in place so that data is not
lost. This mechanism takes the form of a block of memory that can
hold data until it is ready to be picked up. This block of memory is
called a buffer. Figure 15-2 presents the basic block diagram of a
system that incorporates a buffer.

Figure 15-2 Block Diagram of a System Incorporating a Buffer

The concept of buffers is presented here because the internal
structure of a processor often relies on buffers to store data while
waiting for an external device to become available.

15.2.5 The Stack
During the course of normal operation, there will be a number of

times when the processor needs to use a temporary memory, a place
where it can store a number for a while until it is ready to use it again.
For example, every processor has a finite number of registers. If an
application needs more registers than are available, the register values
that are not needed immediately can be stored in this temporary
memory. When a processor needs to jump to a subroutine or function, it
needs to remember the instruction it jumped from so that it can pick

Processor
A

Processor
B

Buffer
"memory queue"

Effects of
unbalanced throughput
are eased with buffer

Instead of passing
data to processor B,
processor A stores

data in buffer

Processor B reads

data from the buffer
as needed.

330 Computer Organization and Design Fundamentals

back up where it left off when the subroutine is completed. The return
address is stored in this temporary memory.

The stack is a block of memory locations reserved to function as
temporary memory. It operates much like the stack of plates at the start
of a restaurant buffet line. When a plate is put on top of an existing
stack of plates, the plate that was on top is now hidden, one position
lower in the stack. It is not accessible until the top plate is removed.

The processor's stack works in the same way. When a processor puts
a piece of data, a plate, on the top of the stack, the data below it is
hidden and cannot be removed until the data above it is removed. This
type of buffer is referred to as a "last-in-first-out" or LIFO buffer.

There are two main operations that the processor can perform on the
stack: it can either store the value of a register to the top of the stack or
remove the top piece of data from the stack and place it in a register.
Storing data to the stack is referred to as "pushing" while removing the
top piece of data is called "pulling" or "popping".

The LIFO nature of the stack makes it so that applications must
remove data items in the opposite order from which they were placed
on the stack. For example, assume that a processor needs to store
values from registers A, B, and C onto the stack. If it pushes register A
first, B second, and C last, then to restore the registers it must pull in
order C, then B, then A.

Example
Assume registers A, B, and C of a processor contain 25, 83, and 74

respectively. If the processor pushes them onto the stack in the order A,
then B, then C then pulls them off the stack in the order B, then A, then
C, what values do the registers contain afterwards?

Solution
First, let's see what the stack looks like after the values from

registers A, B, and C have been pushed. The data from register A is
pushed first placing it at the bottom of the stack of three data items. B
is pushed next followed by C which sits at the top of the stack. In the
stack, there is no reference identifying which register each piece of data
came from.

 Chapter 15: Introduction to Processor Architecture 331

When the values are pulled from the stack, B is pulled first and it

receives the value from the top of the stack, i.e., 74. Next, A is pulled.
Since the 74 was removed and placed in B, A gets the next piece of
data, 83. Last, 25 is placed in register C.

15.2.6 I/O Ports
Input/output ports or I/O ports refer to any connections that exist

between the processor and its external devices. A USB printer or
scanner, for example, is connected to the computer system through an
I/O port. The computer can issue commands and send data to be printed
through this port or receive the device's status or scanned images.

As described in the section on memory mapping in Chapter 12,
some I/O devices are connected directly to the memory bus and act just
like memory devices. Sending data to the port is done by storing data to
a memory address and retrieving data from the port is done by reading
from a memory address.

In some cases, however, the processor has special hardware just for
I/O ports. This is done in one of two ways: either the device interface
hardware is built into the processor or the processor has a second bus
designed to communicate with the I/O devices. In Chapter 16 we will
see that the Intel 80x86 family of processors uses the later method.

If the device is incorporated into the processor, then communication
with the port is done by reading and writing to registers. This is
sometimes the case for simple serial and parallel interfaces such as a
printer port or keyboard and mouse interface.

25
83
74

Top of stack
before pushes

Top of stack
after pushes

25

74

83

Register A:

Register B:

Register C:

25
83
74

Top of stack
after pulls

Top of stack
before pulls

83

25

74

Register A:

Register B:

Register C:

332 Computer Organization and Design Fundamentals

15.3 Processor Level

Figure 15-3 presents the generic block diagram of a processor
system. It represents the interface between the processor, memory, and
I/O devices through the bus that we discussed in the section on memory
interfacing in Chapter 12.

Figure 15-3 Generic Block Diagram of a Processor System

The internals of a processor are a microcosm of the processor
system shown in Figure 15-3. Figure 15-4 shows a central processing
unit (CPU) acting as the brains of the processor connected to memory
and I/O devices through an internal bus within a single chip.

The internal bus is much simpler than the bus the processor uses to
connect its external devices. There are a number of reasons for this.
First, there are fewer devices to interface with, so the addressing
scheme does not need to be that complex. Second, the external bus
needs to be able to adapt to many different configurations using
components from many different manufacturers. The internal bus will
never change for that particular model of processor. Third, the CPU
accesses the internal components in a well-defined, synchronized
manner allowing for more precise timing logic.

The following is a description of the components of the processor
shown in Figure 15-4.

• Central processing unit (CPU) – This is the brain of the processor.

The execution of all instructions occurs inside the CPU along with
the computation required to determine addressing.

• Internal memory – A small, but extremely quick memory. It is
used for any internal computations that need to be done fast without
the added overhead of writing to external memory. It is also used

Processor

Memory
Devices

I/O
Ports

On-Board
I/O

DATA

ADDRESS

CONTROL

 Chapter 15: Introduction to Processor Architecture 333

Figure 15-4 Generic Block Diagram of Processor Internals

for storage by processes that are transparent to the applications, but
necessary for the operation of the processor.

• Data buffer – This buffer is a bidirectional device that holds
outgoing data until the memory bus is ready for it or incoming data
until the CPU is ready for it. This circuitry also provides signal
conditioning ensuring the output signals are strong enough and the
fragile internal components of the CPU are protected.

• Address latch – This group of latches maintains the address that the
processor wishes to exchange data with on the memory bus. It also
provides signal conditioning and circuit protection for the CPU.

• I/O ports – These ports represent the device interfaces that have
been incorporated into the processor's hardware.

• Configuration registers – A number of features of the processor are
configurable. These registers contain the flags that represent the
current configuration of the processor. These registers might also
contain addressing information such as which portions of memory
are protected and which are not.

15.4 CPU Level
If we look at the organization inside the CPU, we see that it in turn

is a microcosm of the processor block diagram of Figure 15-4. Figure
15-5 presents the organization inside a typical CPU.

CPU

To external
data bus

To external
address bus

Internal
Memory

Data
Buffer

Address
Latch

I/O
Ports

To external
devices

Configuration
Registers

Internal
data bus

334 Computer Organization and Design Fundamentals

Figure 15-5 Generic Block Diagram of a Typical CPU

• Control unit – Ask anyone who has worked in a large business
what middle management does and they might say something like,
"Not a darn thing." Ask them what expertise middle management
has and you are likely to get a similar answer. This of course is not
true. Middle management has a very important task: they know
what needs to be done, who best can do it, and when it needs to be
done. This is the purpose of the control unit. It knows the big
picture of what needs to be done, it knows which of the CPU's
components can do it, and it controls the timing to do it.

• Arithmetic logic unit (ALU) – The ALU is a collection of logic
circuits designed to perform arithmetic (addition, subtraction,
multiplication, and division) and logical operations (not, and, or,
and exclusive-or). It's basically the calculator of the CPU. When an
arithmetic or logical operation is required, the values and command
are sent to the ALU for processing.

• Instruction decoder – All instructions are stored as binary values.
The instruction decoder receives the instruction from memory,
interprets the value to see what instruction is to be performed, and
tells the ALU and the registers which circuits to energize in order to
perform the function.

• Registers – The registers are used to store the data, addresses, and
flags that are in use by the CPU.

15.5 Simple Example of CPU Operation
Each component of the CPU has a well-defined allocation of duties.

In addition, the interaction between the components is based on a lock-

Control
Unit

Arithmetic
Logic Unit

Registers

Internal
data bus

Instruction
Decoder

 Chapter 15: Introduction to Processor Architecture 335

step communication scheme that places data where it is needed when it
is needed. The power of the modern processor is the combination of its
ability to execute digital commands quickly and the compiler's ability
to take a complex program written in a high-level language and convert
it to an efficient sequence of digital commands to be used by the CPU.

Let's examine a short piece of code to see how the CPU might
execute it. The following for-loop is presented to show how a compiler
might transform it to a sequence of processor commands.

int sum = 0, max = 0;
for (int i=0; i<100; i ++)
{
 sum += array[i];
 if (max < array[i]) max = array[i];
}

The first thing a compiler might do to create executable code for the

processor is to determine how it is going to use its internal registers. It
needs to decide which pieces of data require frequent and fast
operations and which pieces can be kept in the slower main memory.

First, the index i is accessed repeatedly throughout the block of
code, so the compiler would assign one of the data registers inside the
CPU to contain i. Depending on the size of the registers provided by
the CPU, it would only need to be an 8-bit register.

Second only to i in the frequency of their use are the values sum and
max. They too would be assigned to registers assuming that enough
registers existed in the CPU to support three variables. Since sum and
max are defined as integers, they would need to be assigned to registers
equivalent to the size of an integer as defined for this CPU. In the
Pentium processor, this would be a 32-bit register.

The data contained in array would not be loaded into a register, at
least not all at once. First of all, each element of array is accessed only
once, and it isn't even modified during that access. Second, and more
important, only a few special application processors have enough
registers to hold 100 data elements.

There is one element of array that will be stored in a register, and
that is the pointer or address that identifies where array is stored in
memory. Each time the code needs to access an element of array, it
multiplies the index i by the size of an integer, then adds it to the base
address of array. This provides a pointer to the specific element of
array in which the CPU is interested.

336 Computer Organization and Design Fundamentals

The sequence shown below is one possible way that a compiler
might convert the sample for-loop into CPU commands.

Step 1: Clear registers assigned for i, sum, and max
Step 2: Initialize an address register to point to start of array
Step 3: Use address generated by adding i multiplied by the size of

an integer to the starting address of array to retrieve
array[i] from memory

Step 4: Add retrieved value to register assigned to sum
Step 5: Compare retrieved value to register assigned to max
Step 6: If the value in the register assigned to max was less than

retrieved value, jump to Step 8
Step 7: Copy retrieved value to register assigned to max
Step 8: Increment register assigned to i
Step 9: Compare register assigned to i to 100
Step 10: If register assigned to i is less than 100, jump to Step 3
Step 11: Store values in registers assigned to sum and max to the

appropriate memory locations for later use. Since i is
visible only within this loop, it does not need to be stored.

There are two things to notice about these steps. First, the steps are

very minimal. The instruction set that a CPU uses for its operation is
made from short, simple commands. The typical instruction for a CPU
involves either a single transaction of data (movement from a register
to a register, from memory to a register, or from a register to memory),
or a simple operation such as the addition of two registers.

The second thing to notice is that this simple sequence uses a two-
step process to handle program flow control. In section 15.2.3, it was
shown how a "virtual subtraction" is performed to compare two values.
This operation sets or clears the zero flag, the sign flag, the carry flag,
and the overflow flag depending on the relationship of the magnitude of
the two values. For our example, this virtual subtraction occurs in Step
5 where max is compared to the next value retrieved from array and in
Step 9 where i is compared to the constant 100.

Every compare is followed immediately by a conditional jump that
checks the flags to see if the flow of the program needs to be shifted to
a new address or if it can just continue to the next address in the
sequence. There are many more options for conditional jumps than
were presented in the processor flags section. For example, a

 Chapter 15: Introduction to Processor Architecture 337

conditional "jump if greater than" might work differently when using
2's complement values rather than unsigned integer values.

Table 15-1 presents some of the many options that can be used for
conditional jumps after a compare. High-level language compilers use
these conditional jumps to transform if-statements, for-loops, while-
loops, and switch-case blocks into code useable by the processor. Even
though programmers are told to avoid using any type of "jump"
commands in their code, compiled CPU instructions are full of them.

Table 15-1 Conditional Jumps to be Placed After a Compare

Jump to new address if… Flag conditions
equal zero flag = 1
not equal zero flag = 0
greater than or equal (unsigned) carry flag = 0
greater than (unsigned) carry flag = 0 & zero flag = 0
less than or equal (unsigned) carry flag = 1 or zero flag = 1
less than (unsigned) carry flag = 1
greater than or equal (signed) sign flag = overflow flag
greater than (signed) sign flag = overflow flag &

zero flag = 0
less than or equal (signed) sign flag != overflow flag or

zero flag = 1
less than (signed) sign flag != overflow flag

The application of conditional jumps is not limited only to use with

a compare command. Any operation that affects the flags can be used
to change the flow of the code using conditional jumps. For example, a
section of code may need to be executed if the result of a multiplication
is negative while another section is to be executed if the result is
positive. Table 15-2 presents some of the options that can be used for
conditional jumps after an arithmetic instruction that affects the flags.

Notice that the flag settings for a conditional jump checking for
equality and the conditional jump checking for a zero are the same in
both Table 15-1 and Table 15-2. The processor treats these instructions
the same. In fact, the processor thinks they are exactly the same
command and they are represented in memory using the same code.

338 Computer Organization and Design Fundamentals

The only reason there are two different commands is to assist the
programmer by creating syntax that makes more sense linguistically.

Table 15-2 Conditional Jumps to be Placed After an Operation

Jump to new address if… Flag conditions
result is zero zero flag = 1
result is not zero zero flag = 0
result is positive sign flag = 0
result is negative sign flag = 1
operation generated a carry carry flag = 1
operation generated no carry carry flag = 0

15.6 Assembly and Machine Language
Processor designers create a basic set of instructions for every

processor they design. As we have already discussed, these instructions
are very simplistic, mere baby steps as compared with high-level
languages such as C, C++, or BASIC. In order for the instruction
decoder to decipher what an instruction represents, the instruction itself
must be a number. These numbers are referred to as machine code.
Machine code is the instruction set that the processor uses.

Humans, however, understand words, so each machine code is given
a lexical equivalent. These instructions in text form are called assembly
language. There is a one-to-one correlation between assembly
language instructions and the machine code.

These definitions do not do a good job of showing how processors
execute code. For that, let's design the instruction set for a mock
processor and use those instructions to create some short programs.

To begin with, assume our mock processor has two registers, A and
B. Next, let's assume that the processor is an 8-bit machine, i.e., both A
and B are 8-bit registers and can hold unsigned values from 0 to 255 or
signed values from –128 to 128. Lastly, let's assume that the processor
has 16 address lines. This will give us a memory space of 216 = 64K.

Now let's begin creating the instruction set by brainstorming a list of
possible operations we could perform on these two registers and some
of the conditional branches that we might need. Of course if you do this
exercise on your own, you will come up with a completely different list
of operations. Below is the instruction set we will use for our example.

 Chapter 15: Introduction to Processor Architecture 339

• Move data from A to memory
• Move data from memory to A
• Load A with a constant
• Move data from B to memory
• Move data from memory to B
• Load B with a constant
• Exchange values contained in A and B
• Add A and B and put result in A
• Take the 2's complement of A (make A negative)
• Take the 2's complement of B (make B negative)
• Compare A and B
• Compare A to a constant
• Compare B to a constant
• Jump if equal
• Jump if first value is greater than second value (signed)
• Jump if first value is less than second value (signed)
• Unconditional jump (jump always)

This is a good start except that processors understand binary values,

not English. By numbering the instructions, the instruction decoder can
identify the requested operation by matching it with the corresponding
integer (machine code). Table 15-3 presents one possible numbering.

Unfortunately, human beings are not very adept at programming
with numbers. Words are far more natural for us, so each machine code
instruction is given a text abbreviation to describe its operation. The
resulting collection of words is called assembly language. The one-to-
one correspondence between machine code and assembly language is
used by a program called an assembler to create the machine code that
will be executed by the CPU. Table 15-4 presents a suggested assembly
language for the instruction set of our imaginary processor.

We need to define one last item for our instruction set before we can
begin programming. Some of the processor's instructions require
additional information in order to be executed. This might be a constant
to be loaded into a register, an address pointing to a memory location,
or some other attribute that the CPU needs in order to properly execute
the instruction. These additional pieces of data are called operands.
Table 15-5 takes the list of instructions for our processor and shows the
size and type of operand that would be needed with each.

340 Computer Organization and Design Fundamentals

Table 15-3 Numbered Instructions for Imaginary Processor

Machine code Instruction
01 Move data from A to memory
02 Move data from memory to A
03 Load A with a constant
04 Move data from B to memory
05 Move data from memory to B
06 Load B with a constant
07 Exchange values contained in A and B
08 Add A and B and put result in A
09 Take the 2's complement of A (negative)
0A Take the 2's complement of B (negative)
0B Compare A to B
0C Compare A to a constant
0D Compare B to a constant
0E Jump if equal
0F Jump if first value is greater than second value
10 Jump if first value is less than second value
11 Jump unconditionally (jump always)

Table 15-4 Assembly Language for Imaginary Processor

Machine code Assembly language Instruction
01 STORA Move data from A to memory
02 LOADA Move data from memory to A
03 CNSTA Load A with a constant
04 STORB Move data from B to memory
05 LOADB Move data from memory to B
06 CNSTB Load B with a constant
07 EXCAB Exchange values in A and B
08 ADDAB Add A and B and put result in A
09 NEGA Take the 2's complement of A
0A NEGB Take the 2's complement of B
0B CMPAB Compare A to B
0C CMPAC Compare A to a constant
0D CMPBC Compare B to a constant
0E JEQU Jump if equal
0F JGT Jump if first value is greater
10 JLT Jump if second value is greater
11 JMP Jump always

 Chapter 15: Introduction to Processor Architecture 341

Table 15-5 Operand Requirements for Imaginary Processor

Instruction Operands required
Move data from A to memory (STORA) 16-bit memory address
Move data from memory to A (LOADA) 16-bit memory address
Load A with a constant (CNSTA) 8-bit constant
Move data from B to memory (STORB) 16-bit memory address
Move data from memory to B (LOADB) 16-bit memory address
Load B with a constant (CNSTB) 8-bit constant
Exchange values in A & B (EXCAB) None
Add A and B and put result in A (ADDAB) None
Take the 2's complement of A (NEGA) None
Take the 2's complement of B (NEGB) None
Compare A to B (CMPAB) None
Compare A to a constant (CMPAC) 8-bit constant
Compare B to a constant (CMPBC) 8-bit constant
Jump if equal (JEQU) 16-bit destination address
Jump if 1st val. Is greater than 2nd val. (JGT) 16-bit destination address
Jump if 1st val. Is less than 2nd val. (JLT) 16-bit destination address
Jump always (JMP) 16-bit destination address

Now that we have a set of instructions, let's create a simple program.

This first program adds two variables together and puts the result into a
third variable. In a high-level language, this is a single line of code.

RESULT = VAR1 + VAR2

To do this in assembly language, however, takes a few more steps.

First, our instruction set does not support the addition of variables in
memory. Therefore, the data will need to be copied from memory into
registers where the addition can be performed. Second, since the result
of the addition will be in a register, we will need to store the data back
to memory in order to free up the register. The code below is the
assembly language equivalent of RESULT = VAR1 + VAR2.

LOADA VAR1
LOADB VAR2
ADDAB
STORA RESULT

342 Computer Organization and Design Fundamentals

The next step is to have an assembler convert this assembly
language code to machine language so the processor can execute it.

There is another thing that must be done before a processor can
execute code: the variable names must be converted into addresses. For
the purpose of our example, assume that VAR1 is stored at address
5E0016, VAR2 is stored at 5E0116, and RESULT is stored at 5E0216. By
using Table 15-4 to convert the assembly language to machine code
and by substituting the addresses shown above, the assembly language
program becomes the following sequence of numbers. (All of the
values are shown in hexadecimal.)

02 5E00
05 5E01
08
01 5E02

This is what the processor reads and executes. In memory, it appears

as a sequence of binary values, but to the instruction decoder, each byte
becomes executable code and data. The following sequence of values is
how the data would appear in memory.

02 5E 00 05 5E 01 08 01 5E 02

Now that it has been shown how assembly language is converted

into machine code, let's go the other way and see how the CPU might
interpret a sequence of numbers stored as code in memory. Table 15-6
presents a sample of some code stored in memory starting at address
100016. Each location stores a byte which is the size of a single
machine code instruction, an 8-bit constant, or one half of a 16-bit
address. All of the values are shown in hexadecimal.

Table 15-6 A Simple Program Stored at Memory Address 100016

Address Data Address Data Address Data
100016 0216 100516 0F16 100A16 0516
100116 1216 100616 1016 100B16 0816
100216 3E16 100716 0916 100C16 0116
100316 0C16 100816 0916 100D16 1216
100416 FF16 100916 0616 100E16 3E16

 Chapter 15: Introduction to Processor Architecture 343

Assuming that the instruction decoder is told to begin executing
code starting at address 100016 and by using the machine code to
assembly language translations found in Table 15-4, this string of
values can be decoded into executable instructions. Starting at address
100016, we see that the first instruction is 0216. Table 15-4 equates 0216
to the LOADA instruction while Table 15-5 shows that LOADA uses a
16-bit address. Therefore, the next two bytes in memory (addresses
100116 and 100216) contain the address from which register A will be
loaded. This gives us the first instruction: LOADA 123E.

The next instruction comes after the operands of the LOADA
instruction. This puts us at address 100316. Address 100316 contains
0C16 which we see from Table 15-4 represents CMPAC, i.e., compare
A with a constant. Table 15-5 shows that CMPAC uses a single 8-bit
constant as its operand. Since 100416 contains FF16, the 2's complement
representation of –1, the next instruction is CMPAC –1.

The CMPAC –1 instruction is followed by the machine code 0F16 at
address 100516. 0F16 represents the assembly language JGT, "Jump if
first value is greater than second value." When this instruction is
executed, it will jump if the value loaded into accumulator A is greater
than -1, i.e., if it is a positive number or zero. The next two bytes
represent the address that will be jumped to, 100916.

By continuing this process for the remainder of the code, the
assembly language program that is represented by this machine code is
revealed. Figure 15-6 presents the final code with the leftmost column
presenting the address where the instruction begins and the rightmost
column representing an in-line comment field.

100016 LOADA 123E

16 ;Put data from address 123E16 in A
100316 CMPAC –1 ;Compare A to –1
100516 JGT 1009

16 ;If A>–1, jump to address 100916
100816 NEGA ;A = –A
100916 CNSTB 5 ;Put a constant 5 in B
100B16 ADDAB ;A = A + B
100C16 STORA 123E

16 ;Store A at address 123E16

Figure 15-6 Decoded Assembly Language from Table 15-6

Notice that if A is positive or zero, the compare and subsequent JGT
at addresses 100316 and 100516 respectively will force the processor to

344 Computer Organization and Design Fundamentals

skip over the instruction at 100816 and execute the CNSTB 5 at address
100916. In a high-level language, the code above might look like the
following two instructions where the address of VAR is 123E16.

if (VAR > –1) VAR = –VAR;
VAR = VAR + 5;

It is important to note that not only does machine language require

variable names to be replaced with references to memory addresses, but
jumps must also use addresses. Second, note that a comment field has
been added to the code in Figure 15-6. All assembly languages have a
provision commenting. Usually it is of the in-line variety where a
character, in this case a semi-colon (;), is used to comment out all of the
subsequent characters until the end of the line is reached.

Every processor has an assembly language associated with it. Since
the processors have different architectures, functions, and capabilities,
the languages are usually quite different. There are, however,
similarities. For example, there are three general categories of
instructions for all processors: data transfer, data manipulation, and
program control Data transfer instructions are used to pass data
between different parts of the processor and memory. These include:

• Register-to-register transfers
• Register-to-memory or port transfers
• Memory or port-to-register transfers
• Memory or port-to-memory or port transfers

Data manipulation instructions make use of the ALU to operate on

values contained in the registers or in memory. These include:

• Math operations such as add, subtract, multiply, and divide
• Logic operations such as and, or, xor, and not
• Bit manipulation such as shifting

Within the CPU is a register that contains an address pointing to the

next instruction to be executed. There are a number of different names
given to this register such as program counter or instruction pointer.
Every time an instruction is executed, this pointer is modified so that it
points to the next instruction to be executed. Program control

 Chapter 15: Introduction to Processor Architecture 345

instructions are used to assign new values to this register so that control
can jump to a new position in the program. Some of the program
control instructions use the CPU's flags to determine whether a jump in
the code will be performed or not. These are the conditional jumps
described earlier. The following is a short list of some of the major
program control instructions:

• Jump to a new address of the code
• Jump to a subroutine or function
• Return from a subroutine or function
• Conditional jumps

There are a number of reasons to program in assembly language just
as there are a number of reasons to avoid it. The tiny, almost primitive
processor dependent assembly language instructions cause many
problems for programmers. The result is code that is:

• complicated to learn and use;
• hard to debug;
• more time consuming to write;
• unable to be directly transferred to a different processor; and
• harder to decipher if the programmer is unfamiliar with it.

The main benefits of programming in assembly language are due to

the fact that the programmer is working much closer to the electronics
of the processor. This makes it so that the details of the processor are
not hidden by the operating system or compiler. Programming in
assembly language gives the programmer:

• full access to all processor resources;
• the ability to make much faster code; and
• the ability to make far more compact code.

15.7 Big-Endian/Little-Endian
In the previous section, some of the operands were 16-bits in length

and had to be broken into 8-bit values in order to be stored in memory.
It is not much of a problem to store numbers larger than the width of
the data bus in memory. By partitioning the value to be stored into

346 Computer Organization and Design Fundamentals

chunks that are the size of the data bus, the processor simply uses
sequential memory locations to store large values. For example, if a
processor with an 8-bit data bus needs to store the 32-bit value
3A2B48CA16, it uses four memory locations: one to store 3A16, one for
2B16, one for 4816, and one for CA16. When it retrieves the data, it reads
all four values and reconstructs the data in one of its registers. The
processor designer must ensure that the order in which the smaller
chunks are stored remains consistent for both reading and writing, or
the value will become corrupted. This should not be a problem.

It can become a problem, however, when data is being transferred
between processors that use different orders. Big-endian and little-
endian are terms used to identify the order in which the smaller words
or bytes are stored. Big-endian means that the first byte or word stored
is the most significant byte or word. Little-endian means that the first
byte or word stored is the least significant byte or word. The method
selected does not affect the starting address, nor does it affect the
ordering of items in a data structure.

15.8 Pipelined Architectures
Microprocessor designers, in an attempt to squeeze every last bit of

performance from their designs, try to make sure that every circuit of
the CPU is doing something productive at all times. Circuitry is added
that tries to predict what each CPU component should be doing as soon
as it finishes its current task. Even if the prediction was wrong, nothing
is lost; the result is simply ignored. If, however, the outcome was
useful, then time has been saved and code executed faster.

The most common application of this practice applies to the
execution of instructions. It is based on the fact that there are steps to
the execution of an instruction, each of which uses entirely different
components of the CPU.

Let's begin our discussion by assuming that the execution of a
machine code instruction can be broken into three stages:

• Fetch – get the next instruction to execute from its location in

memory
• Decode – determine which circuits to energize in order to execute

the fetched instruction
• Execute – use the ALU and the processor to memory interface to

execute the instruction

 Chapter 15: Introduction to Processor Architecture 347

By comparing the definitions of the different components of the
CPU shown in Figure 15-5 with the needs of these three different
stages or cycles, it can be seen that three different circuits are used for
these three tasks.

• The internal data bus and the instruction pointer perform the fetch.
• The instruction decoder performs the decode cycle.
• The ALU and CPU registers are responsible for the execute cycle.

Once the logic that controls the internal data bus is done fetching the

current instruction, what's to keep it from fetching the next instruction?
It may have to guess what the next instruction is, but if it guesses right,
then a new instruction will be available to the instruction decoder
immediately after it finishes decoding the previous one.

Once the instruction decoder has finished telling the ALU what to
do to execute the current instruction, what's to keep it from decoding
the next instruction while it's waiting for the ALU to finish? If the
internal data bus logic guessed right about what the next instruction is,
then the ALU won't have to wait for a fetch and subsequent decode in
order to execute the next instruction.

This process of creating a queue of fetched, decoded, and executed
instructions is called pipelining, and it is a common method for
improving the performance of a processor.

Figure 15-7 shows the time-line sequence of the execution of five
instructions on a non-pipelined processor. Notice how a full fetch-
decode-execute cycle must be performed on instruction 1 before
instruction 2 can be fetched. This sequential execution of instructions
allows for a very simple CPU hardware, but it leaves each portion of
the CPU idle for 2 out of every 3 cycles. During the fetch cycle, the
instruction decoder and ALU are idle; during the decode cycle, the bus
interface and the ALU are idle; and during the execute cycle, the bus
interface and the instruction decoder are idle.

Figure 15-8 on the other hand shows the time-line sequence for the
execution of five instructions using a pipelined processor. Once the bus
interface has fetched instruction 1 and passed it to the instruction
decoder for decoding, it can begin its fetch of instruction 2. Notice that
the first cycle in the figure only has the fetch operation. The second
cycle has both the fetch and the decode cycle happening at the same
time. By the third cycle, all three operations are happening in parallel.

348 Computer Organization and Design Fundamentals

Figure 15-7 Non-Pipelined Execution of Five Instructions

Figure 15-8 Pipelined Execution of Five Instructions

Without pipelining, five instructions take 15 cycles to execute. In a
pipelined architecture, those same five instructions take only 7 cycles to
execute, a savings of over 50%.

In general, the number of cycles it takes for a non-pipelined
architecture using three cycles to execute an instruction is equal to three
times the number of instructions.

Num. of cycles (non-pipelined) = 3 × number of instructions (15.1)

For the pipelined architecture, it takes two cycles to "fill the pipe" so

that all three CPU components are fully occupied. Once this occurs,

F D E F D E F D E F D E F D E
15 cycles

Instruction
1

Instruction
2

Instruction
3

Instruction
4

Instruction
5

Time
F – fetch cycle

D – decode cycle

E – execute cycle

F D E
F D E

F D E
F D E

F D E
7 cycles F – fetch cycle

D – decode cycle

E – execute cycle Time

Instruction 1
Instruction 2

Instruction 3
Instruction 4

Instruction 5

 Chapter 15: Introduction to Processor Architecture 349

then an instruction is executed once every cycle. Therefore, the formula
used to determine the number of cycles used by a pipelined processor
to execute a specific number of instructions is:

Num. of cycles (pipelined) = 2 + number of instructions (15.2)

As the number of instructions grows, the number of cycles required

of a pipelined architecture approaches 1/3 that of the non-pipelined.

Example
Compare the number of cycles required to execute 50 instructions

between a non-pipelined processor and a pipelined processor.

Solution
Using equations 15.1 and 15.2, we can determine the number of

cycles necessary for both the non-pipelined and the pipelined CPUs.

number of cycles (non-pipelined) = 3 * 50 = 150 cycles

number of cycles (pipelined) = 2 + 50 = 52 cycles

By taking the difference, we see that the pipelined architecture will

execute 50 instructions in 98 fewer cycles.

There is one more point that needs to be addressed when discussing

pipelined architectures. In order for the bus interface logic to retrieve
the next instruction, it needs to know where to find it. For most
instructions, it is only a matter of knowing how many memory
locations to move forward from the current position.

For example, assume that the bus interface logic for our mock
processor has retrieved the machine code 03. It doesn't need to know
that this instruction is CNSTA, "Load A with a constant," it only needs
to know how many memory locations the instruction uses. From Table
15-5 we see that CNSTA uses an 8-bit operand. Therefore, including
the instruction itself, this particular instruction uses 2 bytes in memory.
This means that the bus interface logic needs to increment 2 positions
in order to point to the next instruction.

The address of the next instruction can be found even for the
unconditional jump instruction, JMP. In this case, the bus interface

350 Computer Organization and Design Fundamentals

logic needs to load the instruction pointer with the two bytes following
the JMP = 1116 machine code to point to the next instruction to fetch.

There is one group of instructions for which there is no method to
reliably predict where to find the next instruction in memory:
conditional jumps. For our mock processor, this group of instructions
includes "Jump if equal" (JEQU), "Jump if first value is greater than
second value" (JGT), and "Jump if first value is less than second value"
(JLT). Each of these instructions has two possible outcomes: either
control is passed to the next instruction or the processor jumps to a new
address. The decision, however, cannot be made until after the
instruction is executed, the last cycle of the sequence. This is because
the flags from the previous instruction must be evaluated before the
processor knows which address to load into the instruction pointer.

There are a number of methods used to predict what the next
instruction will be, but if this prediction fails, the pipeline must be
flushed of all instructions fetched after the conditional jump. The bus
interface logic then starts with a new fetch from the address determined
by the execution of the conditional jump. Each time the pipeline is
flushed, two cycles are added to the execution time of the code.

15.9 Passing Data To and From Peripherals
Although the vast majority of data transactions within a computer

occur between the processor and its memory, sometimes the processor
must communicate with external devices. This means that the processor
must be able to transfer data to and from devices such as a hard drive or
a flash RAM, receive data from inputs such as the keyboard and mouse,
and send data to outputs such as the video system.

Every year brings technology that allows for higher and higher
densities of digital circuitry. This makes it so that every new processor
design contains greater functionality. One of these improvements is to
incorporate greater levels of interface circuitry into the processor. This
might include a built-in keyboard/mouse interface or a communication
interface. When this is done, exchanging data with the interface is
performed by reading from or writing to a set of special registers
contained within the processor.

Sometimes though, the processor will still need a special interface to
an external device. In these cases, the external device can be connected
through the same bus that the processor uses to communicate with the
memory.

 Chapter 15: Introduction to Processor Architecture 351

15.9.1 Memory-Mapped I/O

Recall the process that the processor uses to read and write from
memory. It begins by placing the address of the memory location it
wishes to exchange data with on its address lines. If it is writing data, it
places the data to store in memory on the data lines and pulls the write
line low while leaving the read line high. If it is reading data, it pulls
the read line low while leaving the write line high, then retrieves the
data from the data lines.

Sending data to and receiving data from an external input/output
(I/O) device can be done using the same process. The major difference
is that a memory device will have a great deal more memory locations
than an I/O device. Where a memory device may require an address
space on the order of Megabytes, an I/O device may require only a few
addresses. These addresses may be used for configuring the device,
reading its status, receiving captured data, or sending data.

The chip select design discussion in Chapter 12 showed that the
address lines are divided into two groups, one that specifies the chip
select bit pattern and one that is used to determine the address within
the memory device. The number of bits used for the address within the
memory device is determined by the size of the device itself. For
example, a 256 Meg device uses 28 address lines (228 = 256 Meg).

Assume that an interface needs to be designed for an I/O device that
has two registers that are written to, one for writing a configuration and
one for writing data, and two registers that are read from, one for
reading the device's status and one for reading data. This means that the
device requires only two addresses. This can be handled with a single
address line, A0. Table 15-7 presents the signal settings for
communicating with such a device.

Table 15-7 Signal Values for Sample I/O Device

A0 R W Function
0 0 1 Reading from device's status register
1 0 1 Reading from device's data register
0 1 0 Writing to device's configuration register
1 1 0 Writing to device's data register
X 1 1 No data transaction

352 Computer Organization and Design Fundamentals

By using the remaining address lines for the chip select, this I/O
device can be inserted into the memory map of the processor using the
processor's memory bus. This method of interfacing an I/O device to a
processor is called memory mapping. Figure 15-9 shows a basic
memory mapped device circuit that uses four addresses.

Figure 15-9 Sample Memory Mapped Device Circuit

Some processors add a second read control line and a second write
control line specifically for I/O devices. These new lines operate
independently of the read and write control lines set up for memory.
This does two things for the system. First, it allows the I/O devices to
be added to the main processor bus without stealing memory addresses
from the memory devices. Second, it makes it so that the I/O devices
are not subject to the memory handling scheme of the operating system.

Typically, there is a different set of assembly language instructions
that goes along with these new control lines. This is done to distinguish
a read or write with a memory device from a read or write with an I/O
device. Table 15-8 summarizes how the processor uses the different
read and write control lines to distinguish between an I/O device
transaction and a memory transaction.

A0
A1

DO
D1

D7

chip select

read control

write control

One or two
low-order

address lines

Data lines
through which

to pass data
Majority of

address lines
define chip

select

R

W

Memory
Mapped I/O

Device

 Chapter 15: Introduction to Processor Architecture 353

Table 15-8 Control Signal Levels for I/O and Memory Transactions

Rmemory Wmemory RI/O device WI/O device Operation
0 1 1 1 Reading from memory
1 0 1 1 Writing to memory
1 1 0 1 Reading from I/O device
1 1 1 0 Writing to I/O device
1 1 1 1 Bus is idle

The methods used to physically connect the processor with an I/O

device are only half of the story. The next thing to understand is how
the operating system or the software application accesses the device
while maintaining responsibility for its other duties.

15.9.2 Polling
The method used by the operating system and its software

applications to communicate with I/O devices directly affects the
performance of the processor. This is due to the asynchronous nature of
I/O. In other words, the I/O device is never ready exactly when the
processor needs it to be. For example, the processor cannot predict
when a user might press a key, a network connection is not as fast as
the processor that's trying to send data down it, and the mechanical
nature of a hard drive means that the processor will have to wait for the
data it requested. If an I/O interface is not designed properly, the
processor will be stalled as it waits for access to the I/O device.

There are four basic methods used for communicating with an I/O
device: polling, interrupts, direct memory access, and I/O channels. The
first of these, polling, is by far the lowest performer, but it is presented
here due to its simplicity.

When an I/O device needs attention from the processor, it usually
indicates this by changing a flag in one of its status registers. For
example, a network interface may have a bit in one of its status
registers that is set to a one when its receive buffer is full. If the
processor does not attend to this situation immediately, new incoming
data may overwrite the buffer causing the old data to be lost.

In the polling method, the processor continually reads the status
registers of the I/O device to see if it needs attention. There are two
problems with this method. First, data might be missed if the register is
not read often enough. Second, by forcing the processor to

354 Computer Organization and Design Fundamentals

continuously monitor the I/O inputs, considerable processing time is
eaten up without having much to show for it. The majority of the reads
are not going to show any change in the input values.

15.9.3 Interrupts
The problems caused by using the polling method of communication

with an I/O device can be solved if a mechanism is added to the system
whereby each I/O device could "call" the processor when it needed
attention. This way the processor could tend to its more pressing duties
and communicate with the I/O device only when it is asked to. If each
call was handled with enough priority, the chance of losing data would
be greatly reduced.

This system of calling the processor is called interrupt driven I/O.
Each device is given a software or hardware interface that allows it to
request the processor's attention. This request might be to tell the
processor that new data is available to be read, that the device is ready
to receive data, or that a process has completed. The call to the
processor requesting service is called an interrupt.

It is as if someone was reading a book when the telephone rings.
The reader, concerned about keeping her place in the book, places a
book mark to indicate where she left off. She then answers the phone
and carries on a conversation while the book "waits" for her attention to
return. While chatting on the phone, the person notices the dog standing
at the door waiting to be let out. She tells the person on the other end of
the line, "Hold that thought, I'll be right back." After she lets out the
dog, she returns to the phone call, picks up where she left off. When
she finishes talking on the phone, she hangs up and returns to her
reading exactly where she left off.

The processor handles devices that need service in a similar way.
When the processor receives a device interrupt, it needs to remember
exactly what it was doing when it was interrupted. This includes the
current condition of its registers, the address of the line of code it was
about to execute, and the settings of all of its flags. It does this by
storing its registers and instruction pointer to the stack using pushes.

Once its current status is stored, the processor executes a function to
handle the device's request. This function is called an interrupt service
routine (ISR). There could be a single ISR for a group of devices or a
different ISR for each device. By using interrupts and ISRs, the

 Chapter 15: Introduction to Processor Architecture 355

processor is able to concentrate on running applications while it is the
responsibility of the devices themselves to monitor their condition.

It is important to note that unlike subroutines, ISRs are not called
with function calls from the application or operating system code. The
processor maintains a list of the ISRs that correspond to each device.
When a device interrupts the processor, the processor halts the
execution of the main code, looks up the address of the appropriate
ISR, and jumps to it. Once the ISR is complete, the processor restores
its previous condition by pulling the register values and instruction
pointer from the stack so as to pick up the main code where it left off.
Figure 15-10 presents a basic diagram of this operation.

Figure 15-10 Basic Operation of an ISR

Although interrupts greatly improve the performance of a system by
requiring the processor's attention only when it is needed, there is still a
large burden placed on the processor if the device requires the transfer
of a large block of data.

15.9.4 Direct Memory Access
Assume that a communication device receives a large block of data

that needs to be placed into memory. It interrupts the processor which
in turn initiates the execution of an ISR. The function of the ISR is to
make the processor read the data one piece at a time from the device,
then store it to memory. This repetitive read-write process takes
processing time away from the applications. In addition, each piece of

Main program
.
.
.
.
.

Interrupt Service
Routine
.
.
Return at end

Upon receiving an interrupt
request, the CPU stops execution

of code to execute ISR

Once ISR is finished,
CPU returns to where it left off

356 Computer Organization and Design Fundamentals

data goes through a two step process, a read from the device then a
store to memory, in order to complete a transfer.

It would be far more efficient for the data to be transferred directly
from the I/O device to memory. A process such as this would not need
to involve the processor at all. If the processor could remain off of the
bus long enough for the device to perform the transfer, the processor
would only need to be told when the transfer was completed. It could
even continue to perform functions that did not require bus access.

This type of data transfer is called direct memory access (DMA),
and although it still requires an interrupt, it is far more efficient since
the processor does not need to perform the data transfer. The typical
system uses a device called a DMA controller that is used to take over
the bus when the device needs to make a transfer to or from memory.
The controller either waits for a time when the processor does not need
the bus or it sends the processor a signal asking it to suspend its bus
access for one cycle while the I/O device makes a transfer.

A DMA transaction involves a three step process. In the first step,
the processor sets up the transfer by telling the DMA controller the
direction of the transfer (read or write), which I/O device is to perform
the transfer, the address of the memory location where the data will be
stored to or read from, and the amount of data to be transferred.

Once the processor has set up the transfer, it relinquishes control to
the DMA controller. As the I/O device receives or requires data, it
communicates directly with memory under the supervision of the DMA
controller. The last step comes when the transfer is complete. At this
point, the DMA controller interrupts the processor to tell it that the
transfer is complete.

15.9.5 I/O Channels and Processors
As I/O devices become more sophisticated, more and more of the

processing responsibility can be taken off of the processor and placed
on the I/O device itself. Some I/O devices can access and execute
application software directly from main memory without any processor
intervention. These are I/O channels. Other I/O devices, I/O
processors, are computer systems in their own right taking the
functionality of the processor and distributing it to the end devices.

 Chapter 15: Introduction to Processor Architecture 357

15.10 What's Next?

At this point, the reader should have enough of a background in
computer architecture to begin examining a specific processor. In
Chapter 16, we will study the Intel 80x86 processor architecture from
the point of view of the hardware. Following that, Chapter 17 presents
a basic introduction to the Intel 80x86 assembly language.

Problems
1. List the types of registers utilized by the processor and describe

their operation.

2. Determine the settings of the zero flag, the carry flag, the overflow
flag, and the sign flag for each of the following 8-bit operations.

10110110 01011011 10011001

+ 01001010 + 01110010 – 00001000

3. If registers A, B, and C contain the values 12, 65, and 87
respectively, and they are pushed to the stack in the order A, then
B, then C, what values do A, B, and C have if they then are pulled
from the stack in the order C, then A, then B?

4. List and describe the purpose of each of the components of the
processor.

5. List and describe the purpose of each of the components of the
CPU.

6. Using Tables 15-4 and 15-5, convert the following assembly
language to machine code.

LOADA 100016
LOADB 100116
CMPAB
JGT AGREATER
EXCAB

AGREATER: STORA 100216

7. What is the purpose of an instruction pointer?

358 Computer Organization and Design Fundamentals

8. List the four drawbacks presented in the text to programming in

assembly language.

9. List the three benefits presented in the text to programming with
assembly language.

10. Using Tables 15-4 and 15-5, convert the following machine code
to assembly language starting at address 200016.

Address Data
200016 02
200116 13
200216 4E
200316 05
200416 13
200516 4F
200616 08
200716 05
200816 13
200916 50
200A16 0A
200B16 08
200C16 01
200D16 13
200E16 51

11. What type of instruction might force the processor to flush the
pipeline?

12. List the two benefits of using separate read/write control lines for
I/O devices instead of using memory mapped I/O.

13. What two problems does the polling method to monitor the I/O
devices have that are solved by interrupt-driven I/O?

14. What problem does non-DMA interrupt-driven I/O have that is
solved by DMA?

15. How would the 32-bit value 1A2B3C4D16 be stored in an 8-bit
memory with a processor that used big-endian? Little-endian?

