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CHAPTER FIFTEEN 

Introduction to Processor Architecture 

15.1 Organization versus Architecture 
Up to this point, the discussion has focused on the components from 

which computers are built, i.e., computer organization. In contrast, 
computer architecture is the science of integrating those components to 
achieve a level of functionality and performance. It is as if computer 
organization examines the lumber, bricks, nails, and other building 
material while computer architecture looks at the design of the house. 

We've already discussed a number of the components of computer 
architecture. For example, when we discussed memory in Chapter 12, 
we introduced the interface that the processor uses to communicate 
with the memory and other peripherals of the system. Chapter 13 
showed how internal registers and the cache RAM improve the 
processor's performance.  

This chapter puts these components together and introduces a few 
new ones to complete the architecture of a general purpose processor. 
A few advanced architecture topics are also examined to see how the 
general architecture can modified to deliver improved performance. 

15.2 Components 
Before going into detail on how the processor operates, we need to 

discuss some of its sub-assemblies. The following sections discuss 
some of the general components upon which the processor is built. 

15.2.1 Bus 
As shown in Chapter 12, a bus is a bundle of wires grouped together 

to serve a single purpose. The main application of the bus is to transfer 
data from one device to another. The processor's interface to the bus 
includes connections used to pass data, connections to represent the 
address with which the processor interested, and control lines to 
manage and synchronize the transaction. These lines are "daisy-
chained" from one device to the next.  

The concept of a bus is repeated here because the memory bus is not 
the only bus used by the processor. There are internal buses that the 
processor uses to move data, instructions, configuration, and status 
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between its subsystems. They typically use the same number of data 
lines found in the memory bus, but the addressing is usually simpler. 
This is because there are only a handful of devices between which the 
data is passed. 

In this chapter we will introduce new control lines that go beyond 
the read control, write control, and timing signals discussed in Chapter 
12. These new lines are needed by the processor in order to service 
external devices and include interrupt and device status lines. 

15.2.2 Registers 
As stated when they were introduced in Chapter 13, a register stores 

a binary value using a group of latches. For example, if the processor 
wishes to add two integers, it may place one of the integers in a register 
labeled A and the second in a register labeled B. The contents of the 
latches can then be added by connecting their Q outputs to the addition 
circuitry described in Chapter 8. The output of the addition circuitry is 
then directed to another register in order to store the result. Typically, 
this third register is one of the original two registers, e.g., A = A + B. 

Although variables and pointers used in a program are all stored in 
memory, they are moved to registers during periods in which they are 
the focus of operation. This is so that they can be manipulated quickly. 
Once the processor shifts its focus, it stores the values it doesn't need 
any longer back in memory. 

The individual bit positions of the register are identified by the 
power of two that the position represents as an integer. In other words, 
the least significant bit is bit 0, the next position to the left is bit 1, the 
next is bit 2, and so on. 

For the purpose of our discussion, registers may be used for one of 
four types of operations. 

 
• Data registers – These registers hold the values on which to 

perform arithmetic or logical functions. 
• Address registers – Sometimes, the processor may need to store an 

address rather than a value. A common use of an address register is 
to hold a pointer to an array or string. Another application is to hold 
the address of the next instruction to execute. 

• Instruction registers – Remember that instructions are actually 
numeric values stored in memory. Each number represents a 
different command to be executed by the processor. Some registers 
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are meant specifically to hold instructions so that they can be 
interpreted to see what operation is to be performed. 

• Flag registers – The processor can also use individual bits grouped 
together to represent the status of an operation or of the processor 
itself. The next section describes the use of flags in greater detail. 

15.2.3 Flags 
Picture the instrumentation on the dash board of a car. Beside the 

speedometer, tachometer, fuel gauge, and such are a number of lights 
unofficially referred to as "idiot lights". Each of these lights has a 
unique purpose. One comes on when the fuel is low; another indicates 
when the high beams are on; a third warns the driver of low coolant. 
There are many more lights, and depending on the type of car you 
drive, some lights may even replace a gauge such as oil pressure. 

How is this analogous to the processor's operation? There are a 
number of indicators that reveal the processor's status much like the 
car's idiot lights. Most of these indicators represent the results of the 
last operation. For example, the addition of two numbers might produce 
a negative sign, an erroneous overflow, a carry, or a value of zero. 
Well, that would be four idiot lights: sign, overflow, carry, and zero. 

These indicators, otherwise known as flags, are each represented 
with a single bit. Going back to our example, if the result of an addition 
is negative, the sign flag would equal 1. If the result was not a negative 
number, (zero or greater than zero) the sign flag would equal 0. 

For the sake of organization, these flags are grouped together into a 
single register called the flags register or the processor status register. 
Since the values contained in its bits are typically based on the outcome 
of an arithmetic or logical operation, the flags register is connected to 
the mathematical unit of the processor. 

One of the primary uses of the flags is to remember the results of the 
previous operation. It is the processor's short term memory. This 
function is necessary for conditional branching, a function that allows 
the processor to decide whether or not to execute a section of code 
based on the results of a condition statement such as "if". 

The piece of code shown in Figure 15-1 calls different functions 
based on the relative values of var1 and var2, i.e., the flow of the 
program changes depending on whether var1 equals var2, var1 is 
greater than var2, or var1 is less than var2. So how does the processor 
determine whether one variable is less than or greater than another? 
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if(var1 == var2) 
    equalFunction(); 
else if(var1 > var2)  
    greaterThanFunction(); 
else  
    lessThanFunction(); 

Figure 15-1   Sample Code Using Conditional Statements 

The processor does this using a "virtual subtract."  This is a 
subtraction that occurs in the mathematical unit of the processor where 
it affects the flags, but the result is discarded.  

Referring back to our example, the results of a subtraction of var2 
from var1 is used to select one of three paths through the code.  

 
• var1 is equal to var2 – When one value is subtracted from an equal 

value, the result is zero. Therefore, if the zero flag is set after the 
subtraction, the function equalFunction() should be executed.  

• var1 is greater than var2 – If var1 is larger, then no borrow is 
needed in the subtraction which results in a non-zero value. (A 
borrow will set the carry flag.)  Therefore, after a subtraction, if the 
carry flag and the zero flag are both cleared, var1 was greater than 
var2 and the function greaterThanFunction() is called. 

• var1 is less than var2 – If var1 is smaller, then a borrow is needed 
setting the carry flag. Therefore, after a subtraction, if the carry flag 
is set, var1 was less than var2 and lessThanFunction() is called. 

 
Later in this chapter, there is a more detailed examination of this 

process including a list of the many other program flow control options 
that are available, each of which tests the flags to determine which code 
to jump to after one of these virtual subtracts. 

15.2.4 Buffers 
Rarely does a processor operate in isolation. Typically there are 

multiple processors supporting the operation of the main processor. 
These include video processors, the keyboard and mouse interface 
processor, and the processors providing data from hard drives and 
CDROMs. There are also processors to control communication 
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interfaces such as USB, Firewire, and Ethernet networks. These 
processors all operate independently, and therefore one may finish an 
operation before a second processor is ready to receive the results.  

If one processor is faster than another or if one processor is tied up 
with a process prohibiting if it from receiving data from a second 
process, then there needs to be a mechanism in place so that data is not 
lost. This mechanism takes the form of a block of memory that can 
hold data until it is ready to be picked up. This block of memory is 
called a buffer. Figure 15-2 presents the basic block diagram of a 
system that incorporates a buffer. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15-2   Block Diagram of a System Incorporating a Buffer 

The concept of buffers is presented here because the internal 
structure of a processor often relies on buffers to store data while 
waiting for an external device to become available. 

15.2.5 The Stack 
During the course of normal operation, there will be a number of 

times when the processor needs to use a temporary memory, a place 
where it can store a number for a while until it is ready to use it again. 
For example, every processor has a finite number of registers. If an 
application needs more registers than are available, the register values 
that are not needed immediately can be stored in this temporary 
memory. When a processor needs to jump to a subroutine or function, it 
needs to remember the instruction it jumped from so that it can pick 
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back up where it left off when the subroutine is completed. The return 
address is stored in this temporary memory. 

The stack is a block of memory locations reserved to function as 
temporary memory. It operates much like the stack of plates at the start 
of a restaurant buffet line. When a plate is put on top of an existing 
stack of plates, the plate that was on top is now hidden, one position 
lower in the stack. It is not accessible until the top plate is removed. 

The processor's stack works in the same way. When a processor puts 
a piece of data, a plate, on the top of the stack, the data below it is 
hidden and cannot be removed until the data above it is removed. This 
type of buffer is referred to as a "last-in-first-out" or LIFO buffer. 

There are two main operations that the processor can perform on the 
stack: it can either store the value of a register to the top of the stack or 
remove the top piece of data from the stack and place it in a register. 
Storing data to the stack is referred to as "pushing" while removing the 
top piece of data is called "pulling" or "popping". 

The LIFO nature of the stack makes it so that applications must 
remove data items in the opposite order from which they were placed 
on the stack. For example, assume that a processor needs to store 
values from registers A, B, and C onto the stack. If it pushes register A 
first, B second, and C last, then to restore the registers it must pull in 
order C, then B, then A. 

Example 
Assume registers A, B, and C of a processor contain 25, 83, and 74 

respectively. If the processor pushes them onto the stack in the order A, 
then B, then C then pulls them off the stack in the order B, then A, then 
C, what values do the registers contain afterwards? 

Solution 
First, let's see what the stack looks like after the values from 

registers A, B, and C have been pushed. The data from register A is 
pushed first placing it at the bottom of the stack of three data items. B 
is pushed next followed by C which sits at the top of the stack. In the 
stack, there is no reference identifying which register each piece of data 
came from. 
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When the values are pulled from the stack, B is pulled first and it 

receives the value from the top of the stack, i.e., 74. Next, A is pulled. 
Since the 74 was removed and placed in B, A gets the next piece of 
data, 83. Last, 25 is placed in register C. 

 
 
 
 
 
 
 

15.2.6 I/O Ports 
Input/output ports or I/O ports refer to any connections that exist 

between the processor and its external devices. A USB printer or 
scanner, for example, is connected to the computer system through an 
I/O port. The computer can issue commands and send data to be printed 
through this port or receive the device's status or scanned images.  

As described in the section on memory mapping in Chapter 12, 
some I/O devices are connected directly to the memory bus and act just 
like memory devices. Sending data to the port is done by storing data to 
a memory address and retrieving data from the port is done by reading 
from a memory address. 

In some cases, however, the processor has special hardware just for 
I/O ports. This is done in one of two ways: either the device interface 
hardware is built into the processor or the processor has a second bus 
designed to communicate with the I/O devices. In Chapter 16 we will 
see that the Intel 80x86 family of processors uses the later method. 

If the device is incorporated into the processor, then communication 
with the port is done by reading and writing to registers. This is 
sometimes the case for simple serial and parallel interfaces such as a 
printer port or keyboard and mouse interface. 
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15.3 Processor Level 

Figure 15-3 presents the generic block diagram of a processor 
system. It represents the interface between the processor, memory, and 
I/O devices through the bus that we discussed in the section on memory 
interfacing in Chapter 12. 

 
 
 
 
 
 
 
 

Figure 15-3   Generic Block Diagram of a Processor System 

The internals of a processor are a microcosm of the processor 
system shown in Figure 15-3. Figure 15-4 shows a central processing 
unit (CPU) acting as the brains of the processor connected to memory 
and I/O devices through an internal bus within a single chip.  

The internal bus is much simpler than the bus the processor uses to 
connect its external devices. There are a number of reasons for this. 
First, there are fewer devices to interface with, so the addressing 
scheme does not need to be that complex. Second, the external bus 
needs to be able to adapt to many different configurations using 
components from many different manufacturers. The internal bus will 
never change for that particular model of processor. Third, the CPU 
accesses the internal components in a well-defined, synchronized 
manner allowing for more precise timing logic.  

The following is a description of the components of the processor 
shown in Figure 15-4. 

 
• Central processing unit (CPU) – This is the brain of the processor. 

The execution of all instructions occurs inside the CPU along with 
the computation required to determine addressing. 

• Internal memory – A small, but extremely quick memory. It is 
used for any internal computations that need to be done fast without 
the added overhead of writing to external memory. It is also used  
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Figure 15-4   Generic Block Diagram of Processor Internals 

for storage by processes that are transparent to the applications, but 
necessary for the operation of the processor. 

• Data buffer – This buffer is a bidirectional device that holds 
outgoing data until the memory bus is ready for it or incoming data 
until the CPU is ready for it. This circuitry also provides signal 
conditioning ensuring the output signals are strong enough and the 
fragile internal components of the CPU are protected. 

• Address latch – This group of latches maintains the address that the 
processor wishes to exchange data with on the memory bus. It also 
provides signal conditioning and circuit protection for the CPU. 

• I/O ports – These ports represent the device interfaces that have 
been incorporated into the processor's hardware. 

• Configuration registers – A number of features of the processor are 
configurable. These registers contain the flags that represent the 
current configuration of the processor. These registers might also 
contain addressing information such as which portions of memory 
are protected and which are not.  

15.4 CPU Level 
If we look at the organization inside the CPU, we see that it in turn 

is a microcosm of the processor block diagram of Figure 15-4. Figure 
15-5 presents the organization inside a typical CPU. 
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Figure 15-5   Generic Block Diagram of a Typical CPU 

• Control unit – Ask anyone who has worked in a large business 
what middle management does and they might say something like, 
"Not a darn thing."  Ask them what expertise middle management 
has and you are likely to get a similar answer. This of course is not 
true. Middle management has a very important task: they know 
what needs to be done, who best can do it, and when it needs to be 
done. This is the purpose of the control unit. It knows the big 
picture of what needs to be done, it knows which of the CPU's 
components can do it, and it controls the timing to do it. 

• Arithmetic logic unit (ALU) – The ALU is a collection of logic 
circuits designed to perform arithmetic (addition, subtraction, 
multiplication, and division) and logical operations (not, and, or, 
and exclusive-or). It's basically the calculator of the CPU. When an 
arithmetic or logical operation is required, the values and command 
are sent to the ALU for processing. 

• Instruction decoder – All instructions are stored as binary values. 
The instruction decoder receives the instruction from memory, 
interprets the value to see what instruction is to be performed, and 
tells the ALU and the registers which circuits to energize in order to 
perform the function. 

• Registers – The registers are used to store the data, addresses, and 
flags that are in use by the CPU. 

15.5 Simple Example of CPU Operation 
Each component of the CPU has a well-defined allocation of duties. 

In addition, the interaction between the components is based on a lock-
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step communication scheme that places data where it is needed when it 
is needed. The power of the modern processor is the combination of its 
ability to execute digital commands quickly and the compiler's ability 
to take a complex program written in a high-level language and convert 
it to an efficient sequence of digital commands to be used by the CPU. 

Let's examine a short piece of code to see how the CPU might 
execute it. The following for-loop is presented to show how a compiler 
might transform it to a sequence of processor commands. 

 
int sum = 0, max = 0; 
for (int i=0; i<100; i ++) 
{ 
 sum += array[i]; 
 if (max < array[i]) max = array[i]; 
} 
 
The first thing a compiler might do to create executable code for the 

processor is to determine how it is going to use its internal registers. It 
needs to decide which pieces of data require frequent and fast 
operations and which pieces can be kept in the slower main memory. 

First, the index i is accessed repeatedly throughout the block of 
code, so the compiler would assign one of the data registers inside the 
CPU to contain i. Depending on the size of the registers provided by 
the CPU, it would only need to be an 8-bit register. 

Second only to i in the frequency of their use are the values sum and 
max. They too would be assigned to registers assuming that enough 
registers existed in the CPU to support three variables. Since sum and 
max are defined as integers, they would need to be assigned to registers 
equivalent to the size of an integer as defined for this CPU. In the 
Pentium processor, this would be a 32-bit register. 

The data contained in array would not be loaded into a register, at 
least not all at once. First of all, each element of array is accessed only 
once, and it isn't even modified during that access. Second, and more 
important, only a few special application processors have enough 
registers to hold 100 data elements. 

There is one element of array that will be stored in a register, and 
that is the pointer or address that identifies where array is stored in 
memory. Each time the code needs to access an element of array, it 
multiplies the index i by the size of an integer, then adds it to the base 
address of array. This provides a pointer to the specific element of 
array in which the CPU is interested. 
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The sequence shown below is one possible way that a compiler 
might convert the sample for-loop into CPU commands. 

 
Step 1: Clear registers assigned for i, sum, and max 
Step 2: Initialize an address register to point to start of array  
Step 3: Use address generated by adding i multiplied by the size of 

an integer to the starting address of array to retrieve 
array[i] from memory 

Step 4: Add retrieved value to register assigned to sum 
Step 5: Compare retrieved value to register assigned to max 
Step 6: If the value in the register assigned to max was less than 

retrieved value, jump to Step 8 
Step 7: Copy retrieved value to register assigned to max 
Step 8: Increment register assigned to i 
Step 9: Compare register assigned to i to 100 
Step 10: If register assigned to i is less than 100, jump to Step 3 
Step 11: Store values in registers assigned to sum and max to the 

appropriate memory locations for later use. Since i is 
visible only within this loop, it does not need to be stored. 

 
There are two things to notice about these steps. First, the steps are 

very minimal. The instruction set that a CPU uses for its operation is 
made from short, simple commands. The typical instruction for a CPU 
involves either a single transaction of data (movement from a register 
to a register, from memory to a register, or from a register to memory), 
or a simple operation such as the addition of two registers. 

The second thing to notice is that this simple sequence uses a two-
step process to handle program flow control. In section 15.2.3, it was 
shown how a "virtual subtraction" is performed to compare two values. 
This operation sets or clears the zero flag, the sign flag, the carry flag, 
and the overflow flag depending on the relationship of the magnitude of 
the two values. For our example, this virtual subtraction occurs in Step 
5 where max is compared to the next value retrieved from array and in 
Step 9 where i is compared to the constant 100.  

Every compare is followed immediately by a conditional jump that 
checks the flags to see if the flow of the program needs to be shifted to 
a new address or if it can just continue to the next address in the 
sequence. There are many more options for conditional jumps than 
were presented in the processor flags section. For example, a 
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conditional "jump if greater than" might work differently when using 
2's complement values rather than unsigned integer values. 

Table 15-1 presents some of the many options that can be used for 
conditional jumps after a compare. High-level language compilers use 
these conditional jumps to transform if-statements, for-loops, while-
loops, and switch-case blocks into code useable by the processor. Even 
though programmers are told to avoid using any type of "jump" 
commands in their code, compiled CPU instructions are full of them.  

Table 15-1   Conditional Jumps to be Placed After a Compare 

Jump to new address if… Flag conditions 
equal  zero flag = 1 
not equal  zero flag = 0 
greater than or equal (unsigned) carry flag = 0 
greater than (unsigned) carry flag = 0 & zero flag = 0
less than or equal (unsigned) carry flag = 1 or zero flag = 1
less than (unsigned) carry flag = 1 
greater than or equal (signed) sign flag = overflow flag 
greater than (signed) sign flag = overflow flag &  

zero flag = 0 
less than or equal (signed) sign flag != overflow flag or 

zero flag = 1 
less than (signed) sign flag != overflow flag 

 
The application of conditional jumps is not limited only to use with 

a compare command. Any operation that affects the flags can be used 
to change the flow of the code using conditional jumps. For example, a 
section of code may need to be executed if the result of a multiplication 
is negative while another section is to be executed if the result is 
positive. Table 15-2 presents some of the options that can be used for 
conditional jumps after an arithmetic instruction that affects the flags.  

Notice that the flag settings for a conditional jump checking for 
equality and the conditional jump checking for a zero are the same in 
both Table 15-1 and Table 15-2. The processor treats these instructions 
the same. In fact, the processor thinks they are exactly the same 
command and they are represented in memory using the same code. 
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The only reason there are two different commands is to assist the 
programmer by creating syntax that makes more sense linguistically. 

Table 15-2   Conditional Jumps to be Placed After an Operation 

Jump to new address if… Flag conditions 
result is zero  zero flag = 1 
result is not zero  zero flag = 0 
result is positive sign flag = 0 
result is negative sign flag = 1 
operation generated a carry carry flag = 1 
operation generated no carry carry flag = 0 

15.6 Assembly and Machine Language 
Processor designers create a basic set of instructions for every 

processor they design. As we have already discussed, these instructions 
are very simplistic, mere baby steps as compared with high-level 
languages such as C, C++, or BASIC. In order for the instruction 
decoder to decipher what an instruction represents, the instruction itself 
must be a number. These numbers are referred to as machine code. 
Machine code is the instruction set that the processor uses. 

Humans, however, understand words, so each machine code is given 
a lexical equivalent. These instructions in text form are called assembly 
language. There is a one-to-one correlation between assembly 
language instructions and the machine code.  

These definitions do not do a good job of showing how processors 
execute code. For that, let's design the instruction set for a mock 
processor and use those instructions to create some short programs. 

To begin with, assume our mock processor has two registers, A and 
B. Next, let's assume that the processor is an 8-bit machine, i.e., both A 
and B are 8-bit registers and can hold unsigned values from 0 to 255 or 
signed values from –128 to 128. Lastly, let's assume that the processor 
has 16 address lines. This will give us a memory space of 216 = 64K. 

Now let's begin creating the instruction set by brainstorming a list of 
possible operations we could perform on these two registers and some 
of the conditional branches that we might need. Of course if you do this 
exercise on your own, you will come up with a completely different list 
of operations. Below is the instruction set we will use for our example. 



 Chapter 15: Introduction to Processor Architecture    339 
 
• Move data from A to memory  
• Move data from memory to A  
• Load A with a constant 
• Move data from B to memory  
• Move data from memory to B  
• Load B with a constant 
• Exchange values contained in A and B 
• Add A and B and put result in A  
• Take the 2's complement of A (make A negative) 
• Take the 2's complement of B (make B negative) 
• Compare A and B 
• Compare A to a constant 
• Compare B to a constant 
• Jump if equal 
• Jump if first value is greater than second value (signed) 
• Jump if first value is less than second value (signed) 
• Unconditional jump (jump always) 

 
This is a good start except that processors understand binary values, 

not English. By numbering the instructions, the instruction decoder can 
identify the requested operation by matching it with the corresponding 
integer (machine code). Table 15-3 presents one possible numbering. 

Unfortunately, human beings are not very adept at programming 
with numbers. Words are far more natural for us, so each machine code 
instruction is given a text abbreviation to describe its operation. The 
resulting collection of words is called assembly language. The one-to-
one correspondence between machine code and assembly language is 
used by a program called an assembler to create the machine code that 
will be executed by the CPU. Table 15-4 presents a suggested assembly 
language for the instruction set of our imaginary processor. 

We need to define one last item for our instruction set before we can 
begin programming. Some of the processor's instructions require 
additional information in order to be executed. This might be a constant 
to be loaded into a register, an address pointing to a memory location, 
or some other attribute that the CPU needs in order to properly execute 
the instruction. These additional pieces of data are called operands. 
Table 15-5 takes the list of instructions for our processor and shows the 
size and type of operand that would be needed with each. 
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Table 15-3   Numbered Instructions for Imaginary Processor 

Machine code Instruction 
01 Move data from A to memory  
02 Move data from memory to A  
03 Load A with a constant 
04 Move data from B to memory  
05 Move data from memory to B  
06 Load B with a constant 
07 Exchange values contained in A and B 
08 Add A and B and put result in A  
09 Take the 2's complement of A (negative) 
0A Take the 2's complement of B (negative) 
0B Compare A to B 
0C Compare A to a constant 
0D Compare B to a constant 
0E Jump if equal 
0F Jump if first value is greater than second value 
10 Jump if first value is less than second value 
11 Jump unconditionally (jump always) 

Table 15-4   Assembly Language for Imaginary Processor 

Machine code Assembly language Instruction 
01 STORA Move data from A to memory  
02 LOADA Move data from memory to A  
03 CNSTA Load A with a constant 
04 STORB Move data from B to memory  
05 LOADB Move data from memory to B  
06 CNSTB Load B with a constant 
07 EXCAB Exchange values in A and B 
08 ADDAB Add A and B and put result in A 
09 NEGA Take the 2's complement of A 
0A NEGB Take the 2's complement of B 
0B CMPAB Compare A to B 
0C CMPAC Compare A to a constant 
0D CMPBC Compare B to a constant 
0E JEQU Jump if equal 
0F JGT Jump if first value is greater 
10 JLT Jump if second value is greater 
11 JMP Jump always 
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Table 15-5   Operand Requirements for Imaginary Processor 

Instruction Operands required 
Move data from A to memory (STORA) 16-bit memory address 
Move data from memory to A (LOADA) 16-bit memory address 
Load A with a constant (CNSTA) 8-bit constant 
Move data from B to memory (STORB) 16-bit memory address 
Move data from memory to B (LOADB) 16-bit memory address 
Load B with a constant (CNSTB) 8-bit constant 
Exchange values in A & B (EXCAB) None 
Add A and B and put result in A (ADDAB) None 
Take the 2's complement of A (NEGA) None 
Take the 2's complement of B (NEGB) None 
Compare A to B (CMPAB) None 
Compare A to a constant (CMPAC) 8-bit constant 
Compare B to a constant (CMPBC) 8-bit constant 
Jump if equal (JEQU) 16-bit destination address
Jump if 1st val. Is greater than 2nd val. (JGT) 16-bit destination address
Jump if 1st val. Is less than 2nd val. (JLT) 16-bit destination address
Jump always (JMP) 16-bit destination address
 
Now that we have a set of instructions, let's create a simple program. 

This first program adds two variables together and puts the result into a 
third variable. In a high-level language, this is a single line of code. 

 
RESULT = VAR1 + VAR2 

 
To do this in assembly language, however, takes a few more steps. 

First, our instruction set does not support the addition of variables in 
memory. Therefore, the data will need to be copied from memory into 
registers where the addition can be performed. Second, since the result 
of the addition will be in a register, we will need to store the data back 
to memory in order to free up the register. The code below is the 
assembly language equivalent of RESULT = VAR1 + VAR2. 

 
LOADA VAR1 
LOADB VAR2 
ADDAB 
STORA RESULT 
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The next step is to have an assembler convert this assembly 
language code to machine language so the processor can execute it. 

There is another thing that must be done before a processor can 
execute code: the variable names must be converted into addresses. For 
the purpose of our example, assume that VAR1 is stored at address 
5E0016, VAR2 is stored at 5E0116, and RESULT is stored at 5E0216. By 
using Table 15-4 to convert the assembly language to machine code 
and by substituting the addresses shown above, the assembly language 
program becomes the following sequence of numbers. (All of the 
values are shown in hexadecimal.) 

 
02 5E00 
05 5E01 
08 
01 5E02 

 
This is what the processor reads and executes. In memory, it appears 

as a sequence of binary values, but to the instruction decoder, each byte 
becomes executable code and data. The following sequence of values is 
how the data would appear in memory. 

 
02 5E 00 05 5E 01 08 01 5E 02 

 
Now that it has been shown how assembly language is converted 

into machine code, let's go the other way and see how the CPU might 
interpret a sequence of numbers stored as code in memory. Table 15-6 
presents a sample of some code stored in memory starting at address 
100016. Each location stores a byte which is the size of a single 
machine code instruction, an 8-bit constant, or one half of a 16-bit 
address. All of the values are shown in hexadecimal. 

Table 15-6   A Simple Program Stored at Memory Address 100016 

Address Data Address Data Address Data 
100016 0216 100516 0F16 100A16 0516 
100116 1216 100616 1016 100B16 0816 
100216 3E16 100716 0916 100C16 0116 
100316 0C16 100816 0916 100D16 1216 
100416 FF16 100916 0616 100E16 3E16 
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Assuming that the instruction decoder is told to begin executing 
code starting at address 100016 and by using the machine code to 
assembly language translations found in Table 15-4, this string of 
values can be decoded into executable instructions. Starting at address 
100016, we see that the first instruction is 0216. Table 15-4 equates 0216 
to the LOADA instruction while Table 15-5 shows that LOADA uses a 
16-bit address. Therefore, the next two bytes in memory (addresses 
100116 and 100216) contain the address from which register A will be 
loaded. This gives us the first instruction: LOADA 123E. 

The next instruction comes after the operands of the LOADA 
instruction. This puts us at address 100316. Address 100316 contains 
0C16 which we see from Table 15-4 represents CMPAC, i.e., compare 
A with a constant. Table 15-5 shows that CMPAC uses a single 8-bit 
constant as its operand. Since 100416 contains FF16, the 2's complement 
representation of –1, the next instruction is CMPAC –1. 

The CMPAC –1 instruction is followed by the machine code 0F16 at 
address 100516. 0F16 represents the assembly language JGT, "Jump if 
first value is greater than second value."  When this instruction is 
executed, it will jump if the value loaded into accumulator A is greater 
than -1, i.e., if it is a positive number or zero. The next two bytes 
represent the address that will be jumped to, 100916. 

By continuing this process for the remainder of the code, the 
assembly language program that is represented by this machine code is 
revealed. Figure 15-6 presents the final code with the leftmost column 
presenting the address where the instruction begins and the rightmost 
column representing an in-line comment field. 

 
100016 LOADA 123E

16 ;Put data from address 123E16 in A 
100316 CMPAC –1 ;Compare A to –1 
100516 JGT 1009

16 ;If A>–1, jump to address 100916 
100816 NEGA  ;A = –A 
100916 CNSTB 5 ;Put a constant 5 in B 
100B16 ADDAB  ;A = A + B 
100C16 STORA 123E

16 ;Store A at address 123E16 

Figure 15-6   Decoded Assembly Language from Table 15-6 

Notice that if A is positive or zero, the compare and subsequent JGT 
at addresses 100316 and 100516 respectively will force the processor to 
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skip over the instruction at 100816 and execute the CNSTB 5 at address 
100916. In a high-level language, the code above might look like the 
following two instructions where the address of VAR is 123E16. 

 
if (VAR > –1) VAR = –VAR; 
VAR = VAR + 5; 

 
It is important to note that not only does machine language require 

variable names to be replaced with references to memory addresses, but 
jumps must also use addresses. Second, note that a comment field has 
been added to the code in Figure 15-6. All assembly languages have a 
provision commenting. Usually it is of the in-line variety where a 
character, in this case a semi-colon (;), is used to comment out all of the 
subsequent characters until the end of the line is reached. 

Every processor has an assembly language associated with it. Since 
the processors have different architectures, functions, and capabilities, 
the languages are usually quite different. There are, however, 
similarities. For example, there are three general categories of 
instructions for all processors: data transfer, data manipulation, and 
program control   Data transfer instructions are used to pass data 
between different parts of the processor and memory. These include: 

 
• Register-to-register transfers 
• Register-to-memory or port transfers 
• Memory or port-to-register transfers 
• Memory or port-to-memory or port transfers 

 
Data manipulation instructions make use of the ALU to operate on 

values contained in the registers or in memory. These include: 
 

• Math operations such as add, subtract, multiply, and divide  
• Logic operations such as and, or, xor, and not  
• Bit manipulation such as shifting 

 
Within the CPU is a register that contains an address pointing to the 

next instruction to be executed. There are a number of different names 
given to this register such as program counter or instruction pointer. 
Every time an instruction is executed, this pointer is modified so that it 
points to the next instruction to be executed. Program control 
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instructions are used to assign new values to this register so that control 
can jump to a new position in the program. Some of the program 
control instructions use the CPU's flags to determine whether a jump in 
the code will be performed or not. These are the conditional jumps 
described earlier. The following is a short list of some of the major 
program control instructions: 

 
• Jump to a new address of the code 
• Jump to a subroutine or function 
• Return from a subroutine or function  
• Conditional jumps 
 

There are a number of reasons to program in assembly language just 
as there are a number of reasons to avoid it. The tiny, almost primitive 
processor dependent assembly language instructions cause many 
problems for programmers. The result is code that is: 

 
• complicated to learn and use;  
• hard to debug;  
• more time consuming to write; 
• unable to be directly transferred to a different processor; and  
• harder to decipher if the programmer is unfamiliar with it.  

 
The main benefits of programming in assembly language are due to 

the fact that the programmer is working much closer to the electronics 
of the processor. This makes it so that the details of the processor are 
not hidden by the operating system or compiler. Programming in 
assembly language gives the programmer: 

 
• full access to all processor resources;  
• the ability to make much faster code; and  
• the ability to make far more compact code.  

15.7 Big-Endian/Little-Endian 
In the previous section, some of the operands were 16-bits in length 

and had to be broken into 8-bit values in order to be stored in memory. 
It is not much of a problem to store numbers larger than the width of 
the data bus in memory. By partitioning the value to be stored into 
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chunks that are the size of the data bus, the processor simply uses 
sequential memory locations to store large values. For example, if a 
processor with an 8-bit data bus needs to store the 32-bit value 
3A2B48CA16, it uses four memory locations: one to store 3A16, one for 
2B16, one for 4816, and one for CA16. When it retrieves the data, it reads 
all four values and reconstructs the data in one of its registers. The 
processor designer must ensure that the order in which the smaller 
chunks are stored remains consistent for both reading and writing, or 
the value will become corrupted. This should not be a problem. 

It can become a problem, however, when data is being transferred 
between processors that use different orders. Big-endian and little-
endian are terms used to identify the order in which the smaller words 
or bytes are stored. Big-endian means that the first byte or word stored 
is the most significant byte or word. Little-endian means that the first 
byte or word stored is the least significant byte or word. The method 
selected does not affect the starting address, nor does it affect the 
ordering of items in a data structure. 

15.8 Pipelined Architectures 
Microprocessor designers, in an attempt to squeeze every last bit of 

performance from their designs, try to make sure that every circuit of 
the CPU is doing something productive at all times. Circuitry is added 
that tries to predict what each CPU component should be doing as soon 
as it finishes its current task. Even if the prediction was wrong, nothing 
is lost; the result is simply ignored. If, however, the outcome was 
useful, then time has been saved and code executed faster. 

The most common application of this practice applies to the 
execution of instructions. It is based on the fact that there are steps to 
the execution of an instruction, each of which uses entirely different 
components of the CPU.  

Let's begin our discussion by assuming that the execution of a 
machine code instruction can be broken into three stages: 

 
• Fetch – get the next instruction to execute from its location in 

memory 
• Decode – determine which circuits to energize in order to execute 

the fetched instruction 
• Execute – use the ALU and the processor to memory interface to 

execute the instruction 
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By comparing the definitions of the different components of the 
CPU shown in Figure 15-5 with the needs of these three different 
stages or cycles, it can be seen that three different circuits are used for 
these three tasks. 

 
• The internal data bus and the instruction pointer perform the fetch. 
• The instruction decoder performs the decode cycle. 
• The ALU and CPU registers are responsible for the execute cycle. 

 
Once the logic that controls the internal data bus is done fetching the 

current instruction, what's to keep it from fetching the next instruction? 
It may have to guess what the next instruction is, but if it guesses right, 
then a new instruction will be available to the instruction decoder 
immediately after it finishes decoding the previous one. 

Once the instruction decoder has finished telling the ALU what to 
do to execute the current instruction, what's to keep it from decoding 
the next instruction while it's waiting for the ALU to finish? If the 
internal data bus logic guessed right about what the next instruction is, 
then the ALU won't have to wait for a fetch and subsequent decode in 
order to execute the next instruction. 

This process of creating a queue of fetched, decoded, and executed 
instructions is called pipelining, and it is a common method for 
improving the performance of a processor.  

Figure 15-7 shows the time-line sequence of the execution of five 
instructions on a non-pipelined processor. Notice how a full fetch-
decode-execute cycle must be performed on instruction 1 before 
instruction 2 can be fetched. This sequential execution of instructions 
allows for a very simple CPU hardware, but it leaves each portion of 
the CPU idle for 2 out of every 3 cycles. During the fetch cycle, the 
instruction decoder and ALU are idle; during the decode cycle, the bus 
interface and the ALU are idle; and during the execute cycle, the bus 
interface and the instruction decoder are idle. 

Figure 15-8 on the other hand shows the time-line sequence for the 
execution of five instructions using a pipelined processor. Once the bus 
interface has fetched instruction 1 and passed it to the instruction 
decoder for decoding, it can begin its fetch of instruction 2. Notice that 
the first cycle in the figure only has the fetch operation. The second 
cycle has both the fetch and the decode cycle happening at the same 
time. By the third cycle, all three operations are happening in parallel. 
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Figure 15-7   Non-Pipelined Execution of Five Instructions 

 
 
 
 
 
 
 
 
 
 
 

Figure 15-8   Pipelined Execution of Five Instructions 

Without pipelining, five instructions take 15 cycles to execute. In a 
pipelined architecture, those same five instructions take only 7 cycles to 
execute, a savings of over 50%. 

In general, the number of cycles it takes for a non-pipelined 
architecture using three cycles to execute an instruction is equal to three 
times the number of instructions. 

 
Num. of cycles (non-pipelined) = 3 × number of instructions (15.1) 
 
For the pipelined architecture, it takes two cycles to "fill the pipe" so 

that all three CPU components are fully occupied. Once this occurs, 
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then an instruction is executed once every cycle. Therefore, the formula 
used to determine the number of cycles used by a pipelined processor 
to execute a specific number of instructions is: 

 
Num. of cycles (pipelined) = 2 + number of instructions (15.2) 
 
As the number of instructions grows, the number of cycles required 

of a pipelined architecture approaches 1/3 that of the non-pipelined. 

Example 
Compare the number of cycles required to execute 50 instructions 

between a non-pipelined processor and a pipelined processor. 

Solution 
Using equations 15.1 and 15.2, we can determine the number of 

cycles necessary for both the non-pipelined and the pipelined CPUs. 
 
number of cycles (non-pipelined) = 3 * 50 = 150 cycles 
 
number of cycles (pipelined) = 2 + 50 = 52 cycles 
 
By taking the difference, we see that the pipelined architecture will 

execute 50 instructions in 98 fewer cycles. 
 
There is one more point that needs to be addressed when discussing 

pipelined architectures. In order for the bus interface logic to retrieve 
the next instruction, it needs to know where to find it. For most 
instructions, it is only a matter of knowing how many memory 
locations to move forward from the current position.  

For example, assume that the bus interface logic for our mock 
processor has retrieved the machine code 03. It doesn't need to know 
that this instruction is CNSTA, "Load A with a constant," it only needs 
to know how many memory locations the instruction uses. From Table 
15-5 we see that CNSTA uses an 8-bit operand. Therefore, including 
the instruction itself, this particular instruction uses 2 bytes in memory. 
This means that the bus interface logic needs to increment 2 positions 
in order to point to the next instruction. 

The address of the next instruction can be found even for the 
unconditional jump instruction, JMP. In this case, the bus interface 
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logic needs to load the instruction pointer with the two bytes following 
the JMP = 1116 machine code to point to the next instruction to fetch. 

There is one group of instructions for which there is no method to 
reliably predict where to find the next instruction in memory: 
conditional jumps. For our mock processor, this group of instructions 
includes "Jump if equal" (JEQU), "Jump if first value is greater than 
second value" (JGT), and "Jump if first value is less than second value" 
(JLT). Each of these instructions has two possible outcomes: either 
control is passed to the next instruction or the processor jumps to a new 
address. The decision, however, cannot be made until after the 
instruction is executed, the last cycle of the sequence. This is because 
the flags from the previous instruction must be evaluated before the 
processor knows which address to load into the instruction pointer. 

There are a number of methods used to predict what the next 
instruction will be, but if this prediction fails, the pipeline must be 
flushed of all instructions fetched after the conditional jump. The bus 
interface logic then starts with a new fetch from the address determined 
by the execution of the conditional jump. Each time the pipeline is 
flushed, two cycles are added to the execution time of the code.  

15.9 Passing Data To and From Peripherals 
Although the vast majority of data transactions within a computer 

occur between the processor and its memory, sometimes the processor 
must communicate with external devices. This means that the processor 
must be able to transfer data to and from devices such as a hard drive or 
a flash RAM, receive data from inputs such as the keyboard and mouse, 
and send data to outputs such as the video system. 

Every year brings technology that allows for higher and higher 
densities of digital circuitry. This makes it so that every new processor 
design contains greater functionality. One of these improvements is to 
incorporate greater levels of interface circuitry into the processor. This 
might include a built-in keyboard/mouse interface or a communication 
interface. When this is done, exchanging data with the interface is 
performed by reading from or writing to a set of special registers 
contained within the processor. 

Sometimes though, the processor will still need a special interface to 
an external device. In these cases, the external device can be connected 
through the same bus that the processor uses to communicate with the 
memory. 
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15.9.1 Memory-Mapped I/O 

Recall the process that the processor uses to read and write from 
memory. It begins by placing the address of the memory location it 
wishes to exchange data with on its address lines. If it is writing data, it 
places the data to store in memory on the data lines and pulls the write 
line low while leaving the read line high. If it is reading data, it pulls 
the read line low while leaving the write line high, then retrieves the 
data from the data lines. 

Sending data to and receiving data from an external input/output 
(I/O) device can be done using the same process. The major difference 
is that a memory device will have a great deal more memory locations 
than an I/O device. Where a memory device may require an address 
space on the order of Megabytes, an I/O device may require only a few 
addresses. These addresses may be used for configuring the device, 
reading its status, receiving captured data, or sending data. 

The chip select design discussion in Chapter 12 showed that the 
address lines are divided into two groups, one that specifies the chip 
select bit pattern and one that is used to determine the address within 
the memory device. The number of bits used for the address within the 
memory device is determined by the size of the device itself. For 
example, a 256 Meg device uses 28 address lines (228 = 256 Meg).  

Assume that an interface needs to be designed for an I/O device that 
has two registers that are written to, one for writing a configuration and 
one for writing data, and two registers that are read from, one for 
reading the device's status and one for reading data. This means that the 
device requires only two addresses. This can be handled with a single 
address line, A0. Table 15-7 presents the signal settings for 
communicating with such a device. 

Table 15-7   Signal Values for Sample I/O Device 

A0 R W Function 
0 0 1 Reading from device's status register 
1 0 1 Reading from device's data register 
0 1 0 Writing to device's configuration register 
1 1 0 Writing to device's data register 
X 1 1 No data transaction 
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By using the remaining address lines for the chip select, this I/O 
device can be inserted into the memory map of the processor using the 
processor's memory bus. This method of interfacing an I/O device to a 
processor is called memory mapping. Figure 15-9 shows a basic 
memory mapped device circuit that uses four addresses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15-9   Sample Memory Mapped Device Circuit 

Some processors add a second read control line and a second write 
control line specifically for I/O devices. These new lines operate 
independently of the read and write control lines set up for memory. 
This does two things for the system. First, it allows the I/O devices to 
be added to the main processor bus without stealing memory addresses 
from the memory devices. Second, it makes it so that the I/O devices 
are not subject to the memory handling scheme of the operating system. 

Typically, there is a different set of assembly language instructions 
that goes along with these new control lines. This is done to distinguish 
a read or write with a memory device from a read or write with an I/O 
device. Table 15-8 summarizes how the processor uses the different 
read and write control lines to distinguish between an I/O device 
transaction and a memory transaction.  
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Table 15-8   Control Signal Levels for I/O and Memory Transactions 

Rmemory Wmemory RI/O device WI/O device Operation 
0 1 1 1 Reading from memory 
1 0 1 1 Writing to memory 
1 1 0 1 Reading from I/O device
1 1 1 0 Writing to I/O device 
1 1 1 1 Bus is idle 

 
The methods used to physically connect the processor with an I/O 

device are only half of the story. The next thing to understand is how 
the operating system or the software application accesses the device 
while maintaining responsibility for its other duties.  

15.9.2 Polling 
The method used by the operating system and its software 

applications to communicate with I/O devices directly affects the 
performance of the processor. This is due to the asynchronous nature of 
I/O. In other words, the I/O device is never ready exactly when the 
processor needs it to be. For example, the processor cannot predict 
when a user might press a key, a network connection is not as fast as 
the processor that's trying to send data down it, and the mechanical 
nature of a hard drive means that the processor will have to wait for the 
data it requested. If an I/O interface is not designed properly, the 
processor will be stalled as it waits for access to the I/O device. 

There are four basic methods used for communicating with an I/O 
device: polling, interrupts, direct memory access, and I/O channels. The 
first of these, polling, is by far the lowest performer, but it is presented 
here due to its simplicity. 

When an I/O device needs attention from the processor, it usually 
indicates this by changing a flag in one of its status registers. For 
example, a network interface may have a bit in one of its status 
registers that is set to a one when its receive buffer is full. If the 
processor does not attend to this situation immediately, new incoming 
data may overwrite the buffer causing the old data to be lost. 

In the polling method, the processor continually reads the status 
registers of the I/O device to see if it needs attention. There are two 
problems with this method. First, data might be missed if the register is 
not read often enough. Second, by forcing the processor to 
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continuously monitor the I/O inputs, considerable processing time is 
eaten up without having much to show for it. The majority of the reads 
are not going to show any change in the input values.  

15.9.3 Interrupts 
The problems caused by using the polling method of communication 

with an I/O device can be solved if a mechanism is added to the system 
whereby each I/O device could "call" the processor when it needed 
attention. This way the processor could tend to its more pressing duties 
and communicate with the I/O device only when it is asked to. If each 
call was handled with enough priority, the chance of losing data would 
be greatly reduced. 

This system of calling the processor is called interrupt driven I/O. 
Each device is given a software or hardware interface that allows it to 
request the processor's attention. This request might be to tell the 
processor that new data is available to be read, that the device is ready 
to receive data, or that a process has completed. The call to the 
processor requesting service is called an interrupt. 

It is as if someone was reading a book when the telephone rings. 
The reader, concerned about keeping her place in the book, places a 
book mark to indicate where she left off. She then answers the phone 
and carries on a conversation while the book "waits" for her attention to 
return. While chatting on the phone, the person notices the dog standing 
at the door waiting to be let out. She tells the person on the other end of 
the line, "Hold that thought, I'll be right back."  After she lets out the 
dog, she returns to the phone call, picks up where she left off. When 
she finishes talking on the phone, she hangs up and returns to her 
reading exactly where she left off. 

The processor handles devices that need service in a similar way. 
When the processor receives a device interrupt, it needs to remember 
exactly what it was doing when it was interrupted. This includes the 
current condition of its registers, the address of the line of code it was 
about to execute, and the settings of all of its flags. It does this by 
storing its registers and instruction pointer to the stack using pushes. 

Once its current status is stored, the processor executes a function to 
handle the device's request. This function is called an interrupt service 
routine (ISR). There could be a single ISR for a group of devices or a 
different ISR for each device. By using interrupts and ISRs, the 
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processor is able to concentrate on running applications while it is the 
responsibility of the devices themselves to monitor their condition. 

It is important to note that unlike subroutines, ISRs are not called 
with function calls from the application or operating system code. The 
processor maintains a list of the ISRs that correspond to each device. 
When a device interrupts the processor, the processor halts the 
execution of the main code, looks up the address of the appropriate 
ISR, and jumps to it. Once the ISR is complete, the processor restores 
its previous condition by pulling the register values and instruction 
pointer from the stack so as to pick up the main code where it left off. 
Figure 15-10 presents a basic diagram of this operation. 

 
 
 
 
 
 
 
 
 
 
 

Figure 15-10   Basic Operation of an ISR 

Although interrupts greatly improve the performance of a system by 
requiring the processor's attention only when it is needed, there is still a 
large burden placed on the processor if the device requires the transfer 
of a large block of data.  
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data goes through a two step process, a read from the device then a 
store to memory, in order to complete a transfer. 

It would be far more efficient for the data to be transferred directly 
from the I/O device to memory. A process such as this would not need 
to involve the processor at all. If the processor could remain off of the 
bus long enough for the device to perform the transfer, the processor 
would only need to be told when the transfer was completed. It could 
even continue to perform functions that did not require bus access. 

This type of data transfer is called direct memory access (DMA), 
and although it still requires an interrupt, it is far more efficient since 
the processor does not need to perform the data transfer. The typical 
system uses a device called a DMA controller that is used to take over 
the bus when the device needs to make a transfer to or from memory. 
The controller either waits for a time when the processor does not need 
the bus or it sends the processor a signal asking it to suspend its bus 
access for one cycle while the I/O device makes a transfer.  

A DMA transaction involves a three step process. In the first step, 
the processor sets up the transfer by telling the DMA controller the 
direction of the transfer (read or write), which I/O device is to perform 
the transfer, the address of the memory location where the data will be 
stored to or read from, and the amount of data to be transferred. 

Once the processor has set up the transfer, it relinquishes control to 
the DMA controller. As the I/O device receives or requires data, it 
communicates directly with memory under the supervision of the DMA 
controller. The last step comes when the transfer is complete. At this 
point, the DMA controller interrupts the processor to tell it that the 
transfer is complete. 

15.9.5 I/O Channels and Processors 
As I/O devices become more sophisticated, more and more of the 

processing responsibility can be taken off of the processor and placed 
on the I/O device itself. Some I/O devices can access and execute 
application software directly from main memory without any processor 
intervention. These are I/O channels. Other I/O devices, I/O 
processors, are computer systems in their own right taking the 
functionality of the processor and distributing it to the end devices.  
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15.10 What's Next? 

At this point, the reader should have enough of a background in 
computer architecture to begin examining a specific processor. In 
Chapter 16, we will study the Intel 80x86 processor architecture from 
the point of view of the hardware. Following that, Chapter 17 presents 
a basic introduction to the Intel 80x86 assembly language.  

Problems 
1. List the types of registers utilized by the processor and describe 

their operation. 

2. Determine the settings of the zero flag, the carry flag, the overflow 
flag, and the sign flag for each of the following 8-bit operations. 

 

10110110  01011011  10011001 

+ 01001010  + 01110010  – 00001000 

 

3. If registers A, B, and C contain the values 12, 65, and 87 
respectively, and they are pushed to the stack in the order A, then 
B, then C, what values do A, B, and C have if they then are pulled 
from the stack in the order C, then A, then B? 

4. List and describe the purpose of each of the components of the 
processor. 

5. List and describe the purpose of each of the components of the 
CPU. 

6. Using Tables 15-4 and 15-5, convert the following assembly 
language to machine code. 

LOADA 100016 
LOADB 100116 
CMPAB  
JGT AGREATER
EXCAB  

AGREATER: STORA 100216 
 

7. What is the purpose of an instruction pointer? 
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8. List the four drawbacks presented in the text to programming in 

assembly language. 

9. List the three benefits presented in the text to programming with 
assembly language. 

10. Using Tables 15-4 and 15-5, convert the following machine code 
to assembly language starting at address 200016. 

Address Data
200016 02 
200116 13 
200216 4E 
200316 05 
200416 13 
200516 4F 
200616 08 
200716 05 
200816 13 
200916 50 
200A16 0A 
200B16 08 
200C16 01 
200D16 13 
200E16 51 

 

11. What type of instruction might force the processor to flush the 
pipeline? 

12. List the two benefits of using separate read/write control lines for 
I/O devices instead of using memory mapped I/O. 

13. What two problems does the polling method to monitor the I/O 
devices have that are solved by interrupt-driven I/O? 

14. What problem does non-DMA interrupt-driven I/O have that is 
solved by DMA? 

15. How would the 32-bit value 1A2B3C4D16 be stored in an 8-bit 
memory with a processor that used big-endian?  Little-endian? 

 


